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The size and complexity of graphs increase, the computational demands of GNNs 
become a major bottleneck. To address this challenge, researchers have explored 
hardware acceleration techniques to speed up GNN computations. This paper presents an 
overview- of existing hardware acceleration methods for GNNs, including specialized 
hardware designs and optimizations. We discuss the advantages and limitations of these 
approaches and highlight the key factors to consider when designing hardware 
accelerators for GNNs. Furthermore, we present potential directions for future research 
in this domain, aiming to unlock the full potential of GNNs through efficient hardware 
acceleration. 

Researchers are exploring various approaches for hardware acceleration of GNNs, 
including custom-designed hardware, accelerators like GPUs and TPUs, and software 
optimizations for existing hardware. As this research area progresses, it has the potential 
to revolutionize how graph-based data is processed, enabling more advanced and 
efficient solutions across a wide range of industries and domains. 

The COPRAS method requires identifying selection criteria, evaluating information 
related to these criteria, and developing methods to evaluate Meeting the participant's 
needs Criteria for doing in order to assess the overall performance of the surrogate. 
Decision analysis involves a Decision Maker (DM) Situation to do consider a particular 
set of alternatives and select one among several alternatives, usually with conflicting 
criteria. For this reason, the developed complexity proportionality assessment (COPRAS) 
method can be used. 

Hardware acceleration of GNNS. QM is got the first rank whereas the live journal is 
having the Lowest rank. 
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Introduction
Graph neural networks (GNNs) have expanded the capabilities 
of machine learning by effectively handling graph-structured 
inputs. These networks have demonstrated superior performance 
compared to existing methods across various tasks, spanning 
from predicting molecular properties to identifying communities 
within networks. However, the unique memory access and data 
manipulation demands of GNNs make them unsuitable for 
conventional execution platforms, including prevalent machine 
learning accelerators.To address this limitation, a novel 
architecture has been proposed. This architecture not only 
delivers the substantial computational throughput required by 
GNN models but also incorporates specialized hardware 
components designed to efficiently manage the complex data 
movement inherent in GNN calculations. Through empirical 

evaluation, it has been proven that this architecture significantly 
surpasses existing execution platforms in terms of inference 
speed. For instance, it achieves a performance increase of 7.5 
times over GPUs and an 18-fold improvement over CPUs, while 
maintaining equivalent bandwidth. [Reference: [1]] Network 
virtualization technology heavily relies on Virtual Network 
Embedding (VNE), a crucial aspect. Previous research 
predominantly focused on enhancing resource efficiency, often 
overlooking scalability as a core objective. Consequently, with 
the growing size and increasing demand, the effectiveness of 
these approaches diminishes.  
Existing solutions aimed at tackling this challenge are either not 
applicable in multi-resource scenarios or fail to consider the 
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simultaneous optimization of physical servers and the network 
infrastructure. In this investigation, we introduce GraphViNE, a 
VNE solution designed with parallelizability in mind, employing 
spatial Graph Neural Networks (GNN). The key innovation is 
the server clustering approach employed by GraphViNE, which 
guides the embedding process to achieve faster runtimes and 
improved performance. Through extensive simulation-based 
assessments, we demonstrate that GraphViNE's parallelization 
significantly reduces the runtime by a factor of eight. 
Furthermore, when compared to other simulated algorithms, 
GraphViNE enhances the revenue-to-cost ratio by approximately 
18%.[2]  
A groundbreaking graph neural network (GNN) model enhanced 
by GPU acceleration has been developed for accurately and 
swiftly estimating vector-based average power. This novel 
approach involves representing a net list as a graph, 
incorporating register states and unit inputs from RTL 
simulation as features, and utilizing combinational gate toggle 
rates as labels. During the training process, the GRANNITE 
model learns to predict average toggle rates through 
combinational logic. Subsequently, the trained GNN model can 
rapidly infer average toggle rates for new workloads or net lists 
within seconds. GRANNITE achieves an impressive speedup of 
over 18.7 times, while maintaining a mere 5.5% margin of error 
compared to traditional power analysis methods that rely on 
gate-level simulations across various benchmark circuits. [3] 
The real world is brimming with interconnected systems. One of 
the primary challenges when dealing with data organized in 
network structures is predicting links, which involves predicting 
whether a connection exists between two nodes. Traditional 
approaches rely on explicitly calculating similarity between 
concise representations of nodes, achieved by embedding each 
node into a lower-dimensional space. Hashing methods have 
been effectively employed to generate these node representations 
within the Hamming space, aiming to manage the resource-
intensive similarity calculations in link prediction. However, the 
use of randomized hashing techniques or inefficiencies in 
learning-to-hash methods during the embedding process have led 
to reduced accuracy in hashing-based link prediction algorithms. 
We introduce a straightforward and successful model called 
#GNN that strikes a balance between precision and efficiency. 
By employing randomized hashing for message propagation and 
capturing higher-order relationships within the #GNN 
framework, this model rapidly generates node representations in 
the Hamming space, facilitating accurate link prediction.[4] 
Sparse-Dense Matrix Multiplication (SpMM) is crucial for 
accelerating Graph Neural Networks (GNNs) and ensuring 
compatibility with various frameworks. However, modern 
SpMM techniques, which employ advanced sparse matrix 
representations, can introduce significant preprocessing 
overhead due to their compatibility considerations. Unlike 
Sparse Matrix-Vector (SpMV) optimizations, which don't 
seamlessly apply to SpMM, resulting in inefficient and scattered 
global memory access, the GE-SpMM1 approach employs the 
CSR format. This format aligns with GNN frameworks, 
facilitating integration without format modification overhead. To 

enhance efficient memory access for both sparse and dense data 
in the global memory, coalesced row caching is employed. 
Furthermore, to minimize redundant data loading across GPU 
warps, a coarse-grained warp merging strategy is 
adopted.Empirical experiments on a real-world graph dataset 
demonstrate speedups of up to 1.41 compared to Nvidia 
cuSPARSE and up to 1.81 compared to GraphBLAST. The 
integration of GE-SpMM into GNN frameworks results in 
speedups of up to 3.67 for popular GNN models such as GCN 
and GraphSAGE.We create a versatile abstract framework that 
allows us to apply Graph Neural Network (GNN) models to 
predict traffic patterns. This involves treating a traffic scenario 
as a graph in which vehicles interact. GNNs offer computational 
efficiency, a large capacity for modeling, and a built-in ability to 
represent interactions among traffic participants.  
We evaluate two advanced GNN architectures and make several 
adaptations to suit our specific context. Our results show that, 
compared to a model that disregards interactions, predictive 
accuracy improves by 30% in scenarios characterized by 
substantial interactions. This underscores the importance of 
accounting for interactions and illustrates the applicability of 
graph-based modeling. Consequently, GNNs prove to be a 
valuable enhancement to traffic prediction systems due to their 
capability in handling this aspect. Graph neural networks 
(GNNs) have emerged as a potent technique for processing non-
euclidean data structures in various domains like social networks 
and e-commerce. However, their application to real-world 
systems with large and sparse graph data presents challenges due 
to the considerable computational and memory demands, which 
strain CPUs and GPUs in terms of energy and resources. To 
address this, we introduce the EnGN accelerator design, aiming 
to enable efficient and high-throughput processing of massive 
GNNs. 
The EnGN design focuses on optimizing three crucial stages of 
GNN propagation, which are common computational patterns in 
GNNs. These stages are accelerated through the proposed 
EnGN. To handle the issues of poor locality in sparsely and 
randomly connected vertices, we introduce the ring-edge-reduce 
(RER) dataflow, along with the RER PE-array that implements 
this dataflow. This setup supports the necessary phases 
simultaneously. A graph tiling approach is employed to 
accommodate large graphs within EnGN. Comparatively, EnGN 
outperforms CPU, GPU, and the state-of-the-art GCN 
accelerator HyGCN in terms of performance speedup and energy 
efficiency. [7] 
Convolutional neural networks (CNNs) have demonstrated their 
effectiveness in solving high-dimensional regression and 
classification problems within Euclidean domains. Recently, 
there has been a growing interest in geometric deep learning, 
also referred to as geometric generalization to non-Euclidean 
domains, due to its potential in pattern recognition and 
regression for graph-structured data. In this context, we propose 
an alternative orthonormal system called the Haar basis for 
graphs. We introduce the Haar convolution, a novel graph 
convolution technique tailored for Graph Neural Networks 
(GNNs). Leveraging the sparsity and localized nature of the 
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Haar basis on graph-structured data, we achieve efficient 
computation through fast Haar transforms (FHTs). This leads to 
a substantial enhancement in the computational efficiency of 
GNNs, as the Haar convolution ensures linear computational 
complexity. Our innovation culminates in the creation of 
HANet, a novel category of deep convolutional neural networks 
designed for graphs. Empirical evaluations on real graph datasets 
demonstrate HANet's exceptional performance and efficiency in 
classification and regression tasks. Notably, our method 
represents the first rapid algorithm for spectral graph 
convolution by carefully selecting an orthogonal basis on the 
graph—an essential step in developing spectral-based GNN 
models. In summary, the paper's principal contributions can be 
categorized into three key areas. [8] 
This upgraded iCGCNN model showcases its effectiveness 
through two distinct examples. Firstly, when trained and 
validated on a dataset of 180,000 and 20,000 thermodynamic 
stability entries respectively, derived from density functional 
theory (DFT) calculations in the Open Quantum Materials 
Database (OQMD), iCGCNN achieves a significantly enhanced 
predictive accuracy—20% higher than the original CGCNN. 
This improvement is further validated on a separate test set 
containing 230,000 entries.Secondly, iCGCNN's capability is 
evident in its achievement of a success rate of 31% during a 
high-throughput search for materials possessing the ThCr2Si2 
structure-type. This success rate surpasses an undirected high-
throughput search by a substantial factor of 155 and also 
outperforms the original CGCNN by 2.4 times.In the pursuit of 
discovering novel materials, we employed both CGCNN and 
iCGCNN to conduct 757 density functional theory (DFT) 
computations on 132,600 compounds for elemental decorating 
of the ThCr2Si2 prototype crystal structure. This approach 
significantly increased the computational efficiency of the high-
throughput search by a factor of 65. These findings underscore 
the potential of iCGCNN to expedite the identification of 
crystalline compounds with noteworthy attributes, thereby 
accelerating the high-throughput discovery of novel materials. 
[8]  
Optimal controllers have been developed for a diverse array of 
issues, spanning from restricted consensus in multiagent systems 
to load control in electrical grids and throughput management in 
wireless networks. However, these controllers are centralized 
solutions, necessitating access to the entire system's real-time 
status. While centralized controllers are conceptually ideal, their 
practical implementation and scalability face limitations.In 
contrast, decentralized controller design hinges on the 
communication network formed by the constituent agents within 
the system. These agents are restricted to exchanging 
information solely with proximate agents. This distributed 
information framework serves as the basis for formulating a 
decentralized controller.[9] 
Convolutional neural networks (CNNs) serve as a notable 
illustration of how effectively leveraging data structures within 
temporal sequences and images has transformed the landscape of 
machine learning in the past decade. CNNs employ temporal or 
spatial convolutions to adapt to extensive scenarios, acquire 

adept nonlinear mappings, and mitigate the risk of overfitting. 
Moreover, CNNs offer a degree of mathematical tractability, 
enabling the derivation of theoretical performance boundaries 
concerning domain perturbations. However, CNNs prove 
inefficient for learning from irregular network data due to their 
confinement to convolutions applicable solely to data residing in 
regular domains.[10]  
Deep neural networks (DNNs) have made remarkable 
advancements across various domains like speech and image 
recognition, as well as natural language processing. This 
progress has enabled their application in practical scenarios such 
as self-driving cars, search engines, recommendation systems, 
and more. Convolutional neural networks (CNNs) have 
particularly excelled in computer vision tasks. In the realm of 
graph-structured data like social networks and knowledge 
graphs, researchers have introduced graph convolutional 
networks (GCNs) as a means to apply convolutional techniques. 
In GCNs, a single convolution operation works to aggregate and 
modify feature information from a node's immediate graph 
connections. By stacking multiple such convolutions, a node's 
information spreads extensively across the graph, effectively 
leveraging both feature details and graph structure. GCNs have 
shown impressive model accuracy in various real-world 
applications. For instance, in recommendation systems, they can 
learn features from the user-item graph to generate higher-
quality recommendations. In machine learning applications, the 
prevalence of large graph datasets, containing intricate 
relationships among potentially billions of elements, has 
increased. To effectively handle the complexities of these 
graphs, Graph Neural Networks (GNNs) have gained 
prominence.[14]  
This multiscale graph adapts dynamically across network layers 
during training. To achieve this, a multiscale graph 
computational unit (MGCU) is introduced, enabling the 
extraction of characteristics across various scales and the fusion 
of features between these scales. The architecture follows an 
encoder-decoder structure and remains agnostic to specific 
action categories. The encoder employs a series of MGCUs to 
grasp motion features, while the decoder generates future poses 
using a graph-based gate recurrent unit.[15]  
Materials and Method 
2.1 Graphs:Graphs are visual representations of data that use a 
set of points (vertices or nodes) connected by lines or curves 
(edges) to show the relationship between various elements. They 
provide a clear and concise way to illustrate patterns, trends, and 
correlations within the data, making complex information easier 
to understand and analyze. The main purpose of graphs is to 
present data in a more visually appealing and insightful manner. 
By plotting data points on a graph, it becomes easier to identify 
patterns, trends, outliers, and relationships that might not be 
immediately apparent when looking at raw numbers or textual 
descriptions. Graphs are widely used in various fields, including 
mathematics, science, economics, social sciences, and more, to 
present and interpret data effectively  
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2.2 Total nodes:The total number of nodes is an important 
metric when analyzing the performance of tree-based algorithms 
and when assessing the efficiency of operations on the tree data 
structure. It is used to measure the size and complexity of the 
tree, which can impact the time and space complexity of various 
operations, such as searching, insertion, deletion, and traversal. 
2.3 Total edges: In graph theory, the term "total edges" typically 
refers to the total number of edges in a graph. A graph is a 
mathematical representation of a set of objects (vertices or 
nodes) connected by links (edges). Each edge in the graph 
represents a relationship or connection between two vertices.The 
total number of edges in a graph can vary depending on the 
specific graph structure and the number of vertices it contains. 
For an undirected graph (where edges have no direction), the 
total number of edges is often denoted by "E," and it represents 
the count of all connections between pairs of vertices. In a 
directed graph (where edges have direction), each edge connects 
a specific starting vertex to an ending vertex, and the total 
number of edges is again represented by "E." For example, in a 
simple undirected graph with four vertices labeled A, B, C, and 
D, the total number of edges might be 3, and these edges could 
be represented as {AB, BC, CD}, indicating the connections 
between the vertices. In the case of a directed graph, the edges 
would have an arrow to indicate the direction, like {A -> B, B -> 
C, C -> D} 
2.4 Vertex features:In the context of graphs and network 
analysis, "vertex features" refer to attributes or characteristics 
associated with each individual node (also known as vertices) in 
the graph. Nodes are the fundamental building blocks of a graph, 
and vertex features provide additional information about these 
nodes, helping to describe and differentiate them. For example, 
in a social network graph, each node could represent a person, 
and the vertex features might include attributes such as age, 
gender, location, occupation, and interests. In a transportation 
network graph, the nodes might represent cities or intersections, 
and the vertex features could include population, traffic density, 
or road conditions. Vertex features play a crucial role in various 
applications of graph analysis by considering the features of 
each vertex, algorithms can make more informed decisions and 
better understand the structure and patterns within the graph. 
2.5 Cora: The Cora dataset consists of academic publications, 
where each publication is represented as a node in a citation 
network. When researchers discuss hardware acceleration of 
GNNs with the "CORA" dataset, they are likely referring to the 
application of specialized hardware, TPUs, to speed up the 
computation and training of GNN models on this particular 
dataset. This is because GNNs can be computationally intensive, 
especially when dealing with large graphs, and leveraging 
hardware acceleration can significantly reduce the training time 
and improve the efficiency of these models. 
2.6 Cite seer:The paper or research related to this topic may 
discuss various hardware implementation strategies, such as 
using specialized hardware architectures like GPUs, TPUs, or 
FPGA to accelerate GNN computations. Hardware acceleration 
aims to improve the efficiency and performance of GNNs, 

enabling faster and more scalable solutions for graph-related 
tasks.  
Method:In 1996 in Lithuania COPRAS (Complex Proportion 
evaluation) method was developed Construction, economics, 
real estate and management. One of the articles assesses the risks 
involved in construction projects. The assessment is based on 
various multi-objective assessment methods. The risk 
assessment indices are selected considering the interests, 
objectives and factors of the countries that influence the 
construction efficiency and real estate price increase [16] to 
describe and consider the task model. Complex Proportionality 
Assessment (COPRAS) Method Similar to any Many other 
criteria will make the decision (MCDM) tool, first Proposed 
COBRAS method of several related criteria Basically for 
alternatives Used to prioritize criterion weights. This method is 
better and Worst-Best Solutions Best decision considering 
Selecting alternatives [17].  
Cobras approach is used for device tool choice; Because of this 
the triangle Ambiguous numbers are selected their 
computational performance. Three area specialists are selected to 
assign weights and by way of combining the fuzzy cobra’s 
method, System 1 (MC1) and device 2(MC2) similarly are 
ranked, with way of ma chine three and four. -based totally 
approach is utilized in mixture with fuzzy. COPRAS assess the 
complexity of consumer dating management (CRM) 
performance. A combined choice matrix is obtained from a 
panel of 20 specialists offered 3 options with set, and 5 criteria 
Assessments are done [18]. 
COPRAS to resolve MCDM issues, wherein the weights of the 
criteria and Performance ratings of alternatives are absolute 
Based on linguistic terms are calculated. Comparison of criteria 
Importance calculated and Cobra’s method become used to 
assess renovation strategies [19]. 
This have a look at ambitions to develop the impact of latest 
overall performance metrics in TPM and COPRAS in an 
ambiguous context Primarily multi-criteria selection based on 
opinions Use the do method.COPRAS method changed into The 
most relevant social media platform Rank and choose is used. 
Proposed Applicability of the structure We proved and proved 
the character [22]. 
COPRAS (Complex Proportionality Assessment) To examine 
Cumulative of an alternative Performance, it is essentialbecome 
aware of the maximum vital criteria, examine the options and 
compare the facts Depending on those criteria to fulfil the 
wishes of the DMs to compare gradesevaluation involves a 
situation in which a DM must pick amongst several downloaded 
alternatives given a selected set of commonly conflicting 
standards. For this motive, the developed complex 
proportionality evaluation (COPRAS) method can be used in 
real situations, alternatives The criteria for assessment are vague 
is related to the factor, And the values of the standards are real 
Cannot be expressed with numbers [23]. 
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of Graph Neural Networks 
 

Graphs 
Total 
nodes 

Total 
edges 

Vertex 
features 

1 2710 54232 1438 
1 3330 4745 3710 

 1 19712 44335 510 
1000 12320 12095 16 

1 2660 2664 1 
 

This table provides a comparison of various graph datasets based on the number of graphs, total nodes, total edges, nd the number 
of vertex features they contain. The datasets include Cora, Cutesier, Pub Med, QM, and DBLP. 

Hardware Acceleration of Graph Neural Networks 

Normalized Data 
Graphs 

Total 
nodes 

Total 
edges 

Vertex 
features 

0.0010 0.0665 0.4593 0.2534 
0.0010 0.0818 0.0402 0.6537 
0.0010 0.4839 0.3755 0.0899 
0.9960 0.3025 0.1024 0.0028 
0.0010 0.0653 0.0226 0.0002 
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Figure 3 shows the weighted normalized decision matrix for graphs, total nodes, total edges, vertex features is also Multiple

Bi Ci 
 0.017 0.178  0.021 0.173  0.121 0.116  0.325 0.026  0.017 0.006   

Table 5 shows the hardware acceleration of GNNS Bi, Ci, Min (Ci)/Ci Graphs, total nodes, total edges vertex features. 

Final Result of hardware acceleration of GNNs 

Min(Ci)/Ci Qi Ui 
 0.0319 0.029 7.1158  0.0328 0.033 8.1334  0.0489 0.140 34.3986  0.2160 0.406 100.0000  

1.0000 0.393 96.7418  
Table 6 shows the final result of COPRAS for hardware acceleration of GNNs 
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Figure 3 shows the weighted normalized decision matrix for graphs, total nodes, total edges, vertex features is also Multiple value.    

total nodes, total edges vertex features. it is sum of 
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Table 7 shows the ranks   
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Figure 4 shows the final result of COPRAS for hardware acceleration of GNNs 
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Conclusion  
 In conclusion, the hardware acceleration of Graph Neural 
Networks (GNNs) marks a significant advancement in the field 
of machine learning and graph analytics. Through the utilization 
of specialized hardware such as Graph Processing Units (GPUs), 
Field-Programmable Gate Arrays (FPGAs), and even custom-
designed Application-Specific Integrated Circuits (ASICs), the 
performance and efficiency of GNN computations have been 
greatly enhanced.This hardware acceleration addresses the 
inherent challenges of GNN computations, which are 
characterized by their heavy reliance on graph structures and 
complex neighborhood aggregations. By leveraging parallelism, 
optimized memory access, and tailored architectures, GNNs can 
now be executed with remarkable speedup and energy 
efficiency, enabling the analysis of larger and more intricate 
graphs in real time.Furthermore, the synergy between software 
algorithms and hardware architectures has played a pivotal role 
in achieving these advancements. Researchers and engineers 
have collaborated to develop specialized GNN algorithms that 
are compatible with the strengths of various hardware platforms. 
This alignment between software and hardware has led to 
breakthroughs in both performance and versatility.Nonetheless, 
there remain challenges to address in this domain. The diversity 
of graph structures, the evolving landscape of hardware 
technologies, and the demand for adaptable solutions call for 
ongoing research and innovation. Additionally, the integration of 
hardware acceleration into existing machine learning 
frameworks and pipelines requires careful consideration to 
ensure seamless usability and maintainability.In summary, the 
hardware acceleration of Graph Neural Networks holds great 
promise for revolutionizing the analysis of graph data in various 
domains, from social networks to molecular chemistry. The 
collaborative efforts of researchers and engineers in refining 
hardware architectures and developing optimized algorithms are 
paving the way for more efficient, scalable, and powerful graph 
analytics systems. As this field continues to progress, we 
anticipate even more remarkable developments at the 
intersection of hardware and machine learning.   
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