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This article examines the concept of "smart" in relation to urban mobility and 
sustainability, and identifies inconsistencies in the current literature. The study explores 
how smart technologies can solve transportation problems, focusing on integrating 
artificial intelligence and machine learning to improve autonomy in transportation 
services. The study also emphasizes the importance of environmental protection in urban 
mobility strategies by focusing on low-emission transport and the move towards Mobility-
as-a-Service (MaaS). This paper highlights the need for comprehensive transportation 
models and addresses the challenges cities face in implementing them. 

This study addresses an important gap in the developing field of the smart urban 
movement, where the meaning and implementation of "smart" is still unclear, despite 
significant investments in technology and infrastructure. By examining the link between 
“smart” urban mobility and sustainability, the research points to inconsistencies in the 
existing literature and emphasizes the need for a more defined framework for smart 
mobility initiatives. The findings are significant in that they emphasize the role of 
integrated technological solutions—such as artificial intelligence and machine learning—
in enhancing transport autonomy, improving urban freight logistics, and advancing 
sustainable, low-emission mobility practices.  

Bus Rapid Transit (BRT), Light Rail Transit (LRT), Electric Scooters (E-Scooters), 
Shared Ride-Hailing Services, Bicycle Sharing Systems. Evaluation Preference: Cost 
Efficiency (CE), Environmental Impact Reduction (EIR), Implementation Cost (IC), 
Congestion Contribution (CC). 

The results indicate that Bicycle Sharing Systems achieved the highest rank, while 
Bus Rapid Transit (BRT) had the lowest rank being attained. 

The value of the dataset for Optimising urban mobility through smart transportation 
systems, according to the weighted product method, Bicycle Sharing Systems achieves the 
highest ranking. 
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Introduction 
Previously, transport experts and urban planners mainly 

focused on sustainable urban transport and creating sustainable 
cities. However, with the rise of the digital age, the focus has 
shifted or expanded to include smart cities and smart urban 
mobility. It's intriguing to consider what might come after 
"Smart" in the future. Although "smart" is currently a popular 
term, it seems to be a controversial concept without a clear 
definition. This ambiguity is concerning given the considerable 
importance and resources devoted to smart technologies for 
shaping the urban future.[1] The author seeks to explore the 
concept of "smart" as it relates to intelligent urban mobility and 
sustainability. Through their analysis, they have identified 
inconsistencies and gaps in the existing literature on the smart 
urban movement and provided a comprehensive examination of 
its definition. [2] The two framework project agreements helped 
the city tackle its transportation and mobility challenges by 
adopting comprehensive strategies that take into account the 
relationship between various land uses, transportation supply 
and demand, and alternative modes of travel.  

This analysis was made possible by the skillful negotiation 
of several local bodies. [4] The Fig Model is an essential tool for 
mobility planning, providing sophisticated and reliable analysis 
to aid decision-making. Its adaptability enables it to support 
municipal activities, from transport system planning to local 
traffic management. However, many cities do not have a transit 
model, possibly due to the expected costs associated with its 
development and maintenance. [5] Smart Mobility is a 
comprehensive approach aimed at fostering sustainable 
development by improving transport services and tackling 
technical, social, economic and environmental challenges. 
Environmental protection is an important element in many 
global and European policies. Low-emission mobility is critical 
to moving towards a low-carbon, circular economy, as it is 
essential to address both individual transport needs and the 
movement of goods. [6] As a result, intelligent transportation 
systems have evolved from combining multiple physical 
elements such as connected vehicles, transportation 
infrastructure, and individuals to encompass a variety of societal 
factors, including economic development, urban planning, and 
emergency management.[7] There is a need to promote 
autonomy in transport services. 

Combining artificial intelligence and machine learning with 
crowd data can significantly improve services such as real-time 
traffic monitoring, traffic forecasting, travel time predictions and 
travel activity monitoring. Collectively, these improvements will 
lead to greater levels of autonomy within the transport 
system..[8] Sustainable development addresses current needs 
while ensuring that future generations can meet their own needs. 
These needs typically include objectives related to economic 
development, social and human progress, and environmental and 
environmental health. In natural resource policy, sustainability 

involves managing resource use in a way that avoids degradation 
and allows time to develop complementary or alternative 
solutions. [11] Mobility-as-a-Service (MaaS) is a promising 
concept that, while generating considerable interest, is still in the 
early stages of wider adoption. In its ideal future state, Mamas is 
expected to provide digital solutions for personalized 
multimodal transportation that will transform private vehicle 
ownership. This will be accomplished through a smart online 
platform that seamlessly integrates travel planning, booking, 
intelligent ticketing and real-time information services. [12] 
Regulating the entry time of vehicles helps reduce the speed at 
which queues form in collision zones, thereby reducing 
congestion recovery time and increasing efficiency in these 
areas. We now face the challenge of determining the optimal 
control inputs (acceleration or deceleration) for connected and 
automated vehicles (CAV) in each control zone while adhering 
to strict safety constraints to prevent collisions.[13] Achieving 
full automation in the transportation system requires more than 
automating vehicles. It is necessary to automate the complete 
transport network, which includes elements such as road and 
field support teams, traffic police, road inspections and rescue 
services. [15] Recent advances in information technology and 
telematics have opened new avenues for urban freight operators 
to reduce their costs. Consequently, the third objective of the 
paper is to develop a state-of-the-art tour planning system that 
provides real-time information on the booking status of networks 
and delivery bays. [16] Developing a comprehensive matrix of 
intelligence indicators involves combining technologies with 
advanced application capabilities.  

For this research, data is collected from three primary 
sources: technologies from city officials' websites and 
publications, technologies from service providers' websites, and 
emerging technologies from commercialized or in-development 
city master plans and service providers. Projects and research 
institute publications. [17] System dynamics modeling facilitates 
the development of frameworks that help explore the various 
factors that influence demand and help understand how to 
change user perceptions and behaviours. Models can be 
developed with stakeholder input and used in simulations or 
interactive games for policy learning. However, the existing 
literature assumes that user behaviours and needs are static, 
failing to place them at the canter of mobility-related decision-
making.[19] Future urban traffic management systems will need 
to create, store, supervise, test, optimize and efficiently deploy 
various mobile agents. Additionally, they will need a decision-
support system to communicate with traffic managers.  

An advanced and user-friendly decision-support system is a 
major trend in the development of urban traffic management 
systems. Consequently, future systems should incorporate these 
features. [21] Gestational freight distribution involves multiple 
freight operators. For example, in the parcel and express 
transport sector, large transport companies often cooperate with 
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very small companies, which may only have a few employees or 
drivers. In major cities such as Lyon or Paris, thousands of small 
companies often subcontract to large companies to manage 
materials and complete final deliveries for them. This segment 

of the commodity market faces extremely low profit margins and 
challenging working conditions. As a result, smaller operators 
may be reluctant to invest in new technology, instead relying on 
their existing resources to handle delivery challenges. [22] 

 

 
MATERIALS AND METHODS 

In n-dimensional spaces with weights (for n > 3), 
computing Euclidean distances for rank indices can be 
misleading due to the spatial distribution of the data set, leading 
to unjustified results. This study It provides an in-depth analysis 
to clearly emphasize this issue, which aims to enhance the 
TOPSIS methodology and the broader MCDM literature. The 
article concludes with a summary of the findings. TOPSIS is a 
widely used evaluation method for solving multiple criteria 
decision making (MCDM) problems. Its applications include 
comparing company performance, evaluating financial ratios in 
specific sectors, and evaluating financial investments in 
advanced manufacturing systems. However, the method has its 
limitations. Many improvements to the original TOPSIS 
approach have focused on optimizing the weighting process to 
increase the sensitivity of the R value. Composite index scores 
exhibit stronger associations with deaths per million populations 
than single-layer TOPSIS methods. This underscores the 
effectiveness and value of the hierarchical fuzzy TOPSIS 

method in combining indicators within hierarchical systems to 
form a composite index. It also illustrates the applicability of the 
method in performance evaluation and decision making in 
various domains. This paper uses Analytic Hierarchy Process 
(AHP) to evaluate the relative importance of different criteria 
and TOPSIS method to evaluate different power plant 
technologies using natural gas or hydrogen as fuel based on 
economic, environmental and technical factors. [4] The basic 
principle of the TOPSIS method is that the selected alternative 
should be "closer" to the positive ideal solution and "far" from 
the negative ideal solution. Further research and validation of 
new approaches and solutions to address RRP in the traditional 
TOPSIS method is necessary. This can be done by applying the 
method to various decision problems and performing 
comparative statistical analyses. Ferreira notes that the method 
demonstrates how well the new approach aligns with the basic 
principles of the traditional TOPSIS method. We examine the 
fundamentals, including the fuzzy extension of TOPSIS, and the 
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difficulties in effectively implementing fuzzy TOPSIS. 
However, since weighted aggregation is often inappropriate for 
aggregating local metrics in many real-world situations, we 
recommend exploring alternative aggregation methods. [7] 
Wang and Lou identified the rank inversion problem in the 
TOPSIS method, but did not present a solution. These rank 
reversals violate the invariance principle of utility theory, which 
raises concerns about the reliability of the TOPSIS method. [8] 
A frequent limitation of existing methods for extending TOPSIS 
to interval values is that they provide interval-valued optimal 
solutions based on different assumptions. This conflicts with the 
basic tenets of classical TOPSIS methodology and often stems 
from heuristic assumptions that lack sufficient justification..[9] 

In the proposed fuzzy TOPSIS method, the objective criteria are 
adjusted using the Hsu and Chen approach, which aligns the 
values of these criteria with the linguistic evaluations of the 
subjective criteria. [10] TOPSIS system is also linked to DAD. 
Consequently, both the EM and TOPSIS methods have only a 
small correlation with DAD. [11] We evaluated six 
normalization techniques using a small illustrative example and 
conducted a detailed evaluation to identify the most suitable 
technique for the TOPSIS method. This example illustrates the 
evaluation procedure outlined in this study. [12] Various 
stochastic problems at different scales were developed and 
tested to compare fuzzy TOPSIS rankings with interval values 
obtained from different distance metrics.  

 

 
 
 [13] These methods convert qualitative data into 

quantitative measurements by considering all relevant 
parameters. In this study, TOPSIS method was used to identify 

the best blasting technique for Tamara limestone mine in Iran. 
[14] Ultimately, it selects the information system that aligns 
with the optimal preference of the decision maker. [15] 

 
ANALYSIS AND DISSECTION 

TABLE 1. Optimising urban mobility through smart transportation systems 
DATA SET 

 
Cost Efficiency 

(CE) 
Environmental Impact 

Reduction (EIR) 
Implementation Cost 

(IC) 
Congestion 

Contribution (CC) 
Bus Rapid 

Transit (BRT) 0.78 0.65 0.68 0.75 
Light Rail 

Transit (LRT) 0.72 0.8 0.9 0.4 
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Electric 
Scooters (E-

Scooters) 0.9 0.6 0.2 0.85 
Shared Ride-

Hailing 
Services 0.85 0.5 0.3 0.8 
Bicycle 
Sharing 
Systems 0.95 0.75 0.15 0.6 

 
 
 
Bus Rapid Transit (BRT) scores well on cost efficiency 

(0.78) and congestion reduction (0.75), making it a relatively 
effective solution, though its environmental impact reduction 
(0.65) and implementation cost (0.68) suggest moderate 
environmental benefits and costs. Light Rail Transit (LRT) 
stands out for its high environmental impact reduction (0.8) but 

has a significantly high implementation cost (0.9). It also has a 
relatively low congestion contribution (0.4), making it 
environmentally friendly but costly to implement. Electric 
Scooters (E-Scooters) excel in cost efficiency (0.9) and have a 
low implementation cost (0.2), making them economically 
attractive. However, they contribute heavily to congestion (0.85) 
and provide only moderate environmental benefits (0.6). Shared 
Ride-Hailing Services offer a balance of cost efficiency (0.85) 
and moderate environmental impact reduction (0.5), but have a 
higher congestion contribution (0.8), making them less ideal for 
reducing traffic 

 

. 
FIGURE 1. Optimizing urban mobility through smart transportation systems 

Each mode of transportation is represented by a horizontal 
bar, with distinct color-coded segments corresponding to the 

four evaluation metrics. For instance, Cost Efficiency (CE) is 
indicated in blue, Environmental Impact Reduction (EIR) in red, 
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Implementation Cost (IC) in green, and Congestion 
Contribution (CC) in purple. The length of each colored 
segment within a bar represents the score of that mode of 
transport in that particular dataset.From the graph, it can be 

inferred that Bicycle Sharing Systems score notably higher in 
Cost Efficiency, while Light Rail Transit (LRT) and Bus Rapid 
Transit (BRT) exhibit relatively larger contributions in 
Congestion Contribution (CC) and Implementation Cost (IC).  

 
TABLE 2. Normalized Data 

Normalized Data 
0.4133 0.4348 0.5697 0.4796 
0.3815 0.5351 0.7540 0.2558 
0.4769 0.4013 0.1675 0.5436 
0.4504 0.3345 0.2513 0.5116 
0.5034 0.5017 0.1257 0.3837 

 
The first mode (0.4133 CE, 0.4348 EIR, 0.5697 IC, 0.4796 

CC) demonstrates moderate performance across all categories. It 
balances environmental benefits and costs but doesn't 
particularly excel in any one area. The second mode (0.3815 
CE, 0.5351 EIR, 0.7540 IC, 0.2558 CC) is highly focused on 
environmental impact reduction (0.5351), though it comes with 
the highest implementation cost (0.7540). It also contributes 
least to congestion (0.2558), making it an environmentally 

strong but expensive option. The third mode (0.4769 CE, 0.4013 
EIR, 0.1675 IC, 0.5436 CC) excels in cost efficiency and low 
implementation cost (0.1675), making it economically viable. 
However, it has a higher congestion contribution (0.5436), 
indicating traffic issues despite being low-cost. The fourth mode 
(0.4504 CE, 0.3345 EIR, 0.2513 IC, 0.5116 CC) offers a fair 
balance between cost and congestion but shows lower 
environmental impact reduction (0.3345). 

 
TABLE 3. Weight 

Weight 
0.25 0.25 0.25 0.25 
0.25 0.25 0.25 0.25 
0.25 0.25 0.25 0.25 
0.25 0.25 0.25 0.25 
0.25 0.25 0.25 0.25 

 
By assigning equal significance to all categories, the 

analysis emphasizes a balanced approach to transportation 
solutions, where no single factor dominates the decision-making 
process. Cost efficiency, environmental impact, cost of 
implementation, and the contribution to congestion are all seen 

as equally critical in determining the effectiveness of each 
mode. This approach suggests a holistic view of transportation 
systems, encouraging solutions that not only offer cost-effective 
and environmentally-friendly options but also minimize 
congestion while maintaining reasonable implementation costs.  

 
TABLE 4. Weighted normalized decision matrix 

Weighted normalized decision matrix 
0.1033 0.1087 0.1424 0.1199 
0.0954 0.1338 0.1885 0.0640 
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0.1192 0.1003 0.0419 0.1359 
0.1126 0.0836 0.0628 0.1279 
0.1258 0.1254 0.0314 0.0959 

 
The first mode (0.1033 CE, 0.1087 EIR, 0.1424 IC, 0.1199 

CC) exhibits balanced performance, with a slightly higher 
emphasis on cost efficiency and congestion reduction. However, 
it does not particularly excel in any one area, suggesting a 
moderate, well-rounded option. The second mode (0.0954 CE, 
0.1338 EIR, 0.1885 IC, 0.0640 CC) shines in environmental 
impact reduction and implementation cost, but struggles with a 
low score in congestion contribution (0.0640). This implies an 

environmentally friendly solution, but one that comes with high 
costs and limited impact on congestion. The third mode (0.1192 
CE, 0.1003 EIR, 0.0419 IC, 0.1359 CC) excels in cost 
efficiency and has the lowest implementation cost. However, it 
faces challenges in environmental impact and contributes 
significantly to congestion, indicating that while it’s affordable, 
it’s not ideal for sustainability or traffic relief. 

 
 
 
 
 
TABLE 5.Positive Matrix 

Positive Matrix 
0.1258 0.1338 0.0314 0.0640 
0.1258 0.1338 0.0314 0.0640 
0.1258 0.1338 0.0314 0.0640 
0.1258 0.1338 0.0314 0.0640 
0.1258 0.1338 0.0314 0.0640 

 
This matrix signifies the ideal or target performance levels 

for each criterion. The highest value is for Environmental 
Impact Reduction (0.1338), emphasizing the importance of 
sustainability in transportation decisions. Cost Efficiency is also 
prioritized (0.1258), indicating the need for economic viability. 
The lowest values are assigned to Implementation Cost (0.0314) 

and Congestion Contribution (0.0640), highlighting the goal of 
minimizing costs and reducing traffic congestion. The 
uniformity across all modes suggests that, regardless of the 
mode being analyzed, these are the benchmark values that 
transportation solutions should aim for.  

 
TABLE 6. Negative matrix 

Negative matrix 
0.0954 0.0836 0.1885 0.1359 
0.0954 0.0836 0.1885 0.1359 
0.0954 0.0836 0.1885 0.1359 
0.0954 0.0836 0.1885 0.1359 
0.0954 0.0836 0.1885 0.1359 
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These values highlight the areas where performance would 

be considered poor or suboptimal. The highest value is for 
Implementation Cost (0.1885), indicating that high 
implementation costs are undesirable. Similarly, the high score 
for Congestion Contribution (0.1359) reflects the negative 
impact of increased congestion, which should be minimized in 
transportation systems. Cost Efficiency (0.0954) and 
Environmental Impact Reduction (0.0836) scores are relatively 

low in this matrix, suggesting that inadequate cost efficiency 
and poor environmental performance are the least favorable 
outcomes. The uniformity across all modes implies that these 
represent the worst possible scenarios, regardless of the 
transportation solution being evaluated. This negative matrix 
serves as a reference point to identify which modes are 
performing poorly in relation to the desired standards.   

 
TABLE 7. Si Negative 

Si Negative 
Bus Rapid Transit (BRT) 0.0554 
Light Rail Transit (LRT) 0.0877 

Electric Scooters (E-Scooters) 0.1495 
Shared Ride-Hailing Services 0.1271 

Bicycle Sharing Systems 0.1701 
 
 
 
Bus Rapid Transit (BRT) has the lowest Si Negative value 

of 0.0554, suggesting it is the closest to avoiding the worst-case 
scenario. This indicates that BRT performs well across the 
evaluated criteria and maintains a strong balance between cost 
efficiency, environmental impact, implementation cost, and 
congestion contribution. Light Rail Transit (LRT) follows with a 
Si Negative value of 0.0877, showing that while it is farther 

from the negative benchmark than BRT, it still performs well, 
particularly in areas like environmental impact reduction, 
though it may face challenges in other areas like congestion 
contribution. Electric Scooters (E-Scooters), with a value of 
0.1495, and Shared Ride-Hailing Services at 0.1271, perform 
moderately. These modes may struggle with specific criteria like 
congestion or environmental impact but are still better than the 
worst possible performance. 

 
TABLE 8. Ci 

Ci 
Bus Rapid Transit (BRT) 0.3008 
Light Rail Transit (LRT) 0.3541 

Electric Scooters (E-Scooters) 0.6505 
Shared Ride-Hailing Services 0.5905 

Bicycle Sharing Systems 0.8373 
 
Bus Rapid Transit (BRT) has the lowest Ci value of 0.3008, 

indicating that it is the closest option to the best solution. This 
means BRT is the best performer across the four categories—
Cost Efficiency, Environmental Impact Reduction, 
Implementation Cost, and Congestion Contribution—making it 
a well-rounded and balanced option for sustainable urban 

mobility. Light Rail Transit (LRT), with a Ci value of 0.3541, 
also performs well but is slightly further from the ideal. LRT 
likely excels in areas like environmental impact but may have 
higher implementation costs, making it a strong but slightly 
more expensive option. Electric Scooters (E-Scooters), with a Ci 
of 0.6505, and Shared Ride-Hailing Services at 0.5905, are mid-
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range performers. They might excel in cost efficiency or 
congestion reduction but fall short in other areas such as 

environmental impact or implementation cost
. 
TABLE 9.Rank 

Rank 
Bus Rapid Transit (BRT) 5 
Light Rail Transit (LRT) 4 

Electric Scooters (E-Scooters) 2 
Shared Ride-Hailing Services 3 

Bicycle Sharing Systems 1 
 
Bicycle Sharing Systems, ranked 1st, emerge as the top 

performer. This suggests that despite some challenges, such as 
possible congestion contribution or implementation costs, the 
benefits—such as high cost efficiency and lower environmental 
impact—outweigh the drawbacks, making it the most effective 
mode in this evaluation. Electric Scooters (E-Scooters) rank 
2nd, likely excelling in areas like cost efficiency and congestion 
contribution. Their relatively low implementation cost also 
contributes to their high ranking, even if they may have room 

for improvement in environmental impact. Shared Ride-Hailing 
Services, ranked 3rd, perform reasonably well across all 
categories. They may offer a balanced solution but fall short of 
outperforming the top two modes, potentially due to higher 
implementation costs or environmental concerns.Light Rail 
Transit (LRT), ranked 4th, likely performs well in 
environmental impact but faces higher implementation costs, 
which affects its ranking despite its strengths. 

 
FIGURE 2. Rank 
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The graph shows a steep initial rise with Bus Rapid Transit 
(BRT) achieving the highest rank, close to 100%. This suggests 
that BRT leads significantly according to the metric being 
evaluated. After this peak, the graph flattens out, indicating that 
the remaining transportation modes—Light Rail Transit (LRT), 
Electric Scooters (E-Scooters), Shared Ride-Hailing Services, 
and Bicycle Sharing Systems—share relatively similar rankings, 

hovering just below the 100% mark. The relatively flat nature of 
the line after the BRT ranking indicates that the other modes of 
transport exhibit comparable performance in the metric. 
However, none of these modes surpass BRT in the evaluation, 
making it the dominant option in terms of whatever factor or 
combination of factors is being measured.

 
CONCLUSION 

The analysis highlights inconsistencies in current literature 
on smart urban mobility, emphasizing the need for a 
comprehensive understanding of smart technologies and their 
role in achieving sustainable transport systems. Effective 
transport and mobility planning require integrated strategies that 
consider land use, mobility demand, and alternative transport 
modes. Technological advances such as Intelligent 
Transportation Systems (ITS) and Artificial Intelligence (AI) for 

real-time traffic monitoring and forecasting are critical to 
achieving greater levels of autonomy in transportation services. 
However, many cities face challenges like the cost of 
developing transit models, which limits their ability to optimize 
mobility planning. In conclusion, while smart mobility offers a 
promising future for low-emission and efficient transportation, 
its successful implementation requires clear frameworks, 
integrated technologies, and policies that address economic, 
social, and environmental concerns. 
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