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These algorithms are employed to analyze key input parameters, including sensor
accuracy (%), processing power (GHz), and the number of training episodes (#), to
determine their influence on the agent’s learning efficiency and overall performance. The
effectiveness of an RL agent is often measured using an evaluation metric such as the
average reward (R), which quantifies the long-term benefits obtained by following a
learned policy. By leveraging predictive modeling techniques, we aim to establish
correlations between input parameters and RL performance, helping to refine system
design and resource allocation. Sensor accuracy has a direct influence on decision-making
processes and is essential in assessing the dependability of state information.. Processing
power influences the speed and complexity of model updates, affecting convergence rates.
The number of training episodes determines the agent’s exposure to various
environmental states, influencing its ability to generalize learned behaviors.

This study employs a hybrid approach where RL agents are trained in simulated
environments, and machine learning models are used to analyze performance trends. LR
provides a simple yet interpretable linear relationship between parameters and average
reward, while RFR captures complex nonlinear interactions and enhances prediction
robustness. SVM, known for its strong generalization capabilities, further refines decision
boundaries in high-dimensional spaces. By comparing these approaches, we derive
insights into which factors most significantly impact RL performance and how predictive
models can be leveraged to improve autonomous system efficiency. The findings show
that the average reward is significantly impacted nonlinearly by sensor accuracy.,
highlighting the need for high-fidelity sensing in autonomous applications. Processing
power influences real-time adaptability, while an optimal number of training episodes
ensures sufficient learning without excessive computational overhead. The findings
demonstrate that integrating supervised learning techniques with RL not only aids in
understanding system behavior but also provides a foundation for adaptive optimization
strategies in real-world applications. Future research will concentrate on extending these
techniques to more complex, multi-agent environments and exploring meta-learning
approaches for enhanced adaptability.
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We investigate the problem of enhancing users'
comprehension and confidence in deep Reinforcement Learning
(RL) systems. To assess the efficacy of this XAI system, we
created a user interface and ran a test with actual users. The
findings show that when the Al system provides an explanation,
user approval and confidence are significantly higher than when
it does not.[1] It is anticipated that mobile robots and other
autonomous systems would be crucial in demanding settings like
space and in sectors like industrial production and transportation.
Usually, different algorithms are used to map the environment,
locate the robot on the map, calculate a path to the objective, and
then carry out the trajectory. Adari et al. has been published for
their work on applying artificial neural networks to fiber-
reinforced polymer composites, evaluated using the ARAS
method.[2] These approaches do have certain drawbacks,
though, such as the presumption that there are no transparent or
dynamic objects in the surroundings. They can have a significant
computational overhead and don't learn from mistakes or real-
world experiences.

As a result, other strategies, such as deep reinforcement
learning, are being investigated for autonomous navigation.
However, there are a number of difficult design choices that
must be made when applying deep reinforcement learning to
particular tasks. The necessity of a structured methodology in
the creation of deep reinforcement learning systems has not been
well addressed by prior research. [3] Adaptive autonomy has
been enabled by using machine learning. Based on the quantity
and caliber of feedback on the system or job, machine learning is
classified as supervised, unsupervised, or reinforcement. The
feedback information given to learning algorithms is a labeled
training data set. In unsuspended learning, the algorithm is not
given any feedback information, and the goal is to group the
sample sets according to how similar the input samples are. RL
is a goal-oriented learning technique where a create a policy that
maximizes a long-term payoff. At every level, an RL agent gets
evaluation data on how effective. All work done in fields like
psychology, computer science, economics, and so on is included
in the term "RL." Approximate DP (ADP) is a more recent
version of RL. [4] Almost all of these fields employ machine
learning and artificial intelligence approaches in addition to
conventional control design methods. The various tiers of
Motion Planning, including control, trajectory planning, and
strategic choices, are the subject of additional study. This article
discusses Deep Reinforcement Learning (DRL), one of the many
approaches that have been created in machine learning itself.

The study explains the fundamentals of DRL and offers
insight into the hierarchical motion planning problem. [4]Alight
decrease in processing power would allow it to be redirected
toward accelerating the flight, which would save a substantial
amount of energy due to shorter flight durations. Because energy
and operating voltage have a quadratic relationship, reducing the

onboard processor's supply voltage is a potent way to compute
energy-efficiently within the allocated Swap budgets. [6]A

current field of study in computer vision and control
systems is autonomous driving. Many companies in the sector,
like Google, Tesla, NVIDIA, Uber, and Baidu, are dedicated to
developing state-of-the-art autonomous driving cars because
they have the Potential to truly make people's lives better. On the
other hand, several games have successfully used the deep
reinforcement learning technique. In particular, picture attributes
extracted from raw images are often used to characterize state
spaces in vision control systems. Compared to situations where
the controller has just discrete and constrained action spaces,
deep reinforcement learning methods perform worse when used
in autonomous driving systems. For instance, certain Atari
games, including Enduro and Space Invaders, only have four
actions. Despite the high-dimensionality of its spaces, the rules
and board states in the game Go are fairly simple to visualize. In
many cases, visual issues are easily overcome, and agents only
need to focus on optimizing the policy with limited action
spaces. However, state spaces and input images from the
surroundings for autonomous driving include extremely complex
backgrounds and internal items, like people, that can change
dynamically and exhibit unpredictable behavior.

These include a variety of challenging visual tasks like
depth estimation, picture comprehension, and object detection.
More significantly, in order to stay safe and avoid colliding with
things in such challenging situations, our controller must
respond appropriately and quickly. [7]Autonomous robotic
systems are frequently evaluated utilizing evolutionary search-
based approaches. However, these methods frequently use
computationally demanding simulator-based models to evaluate
test cases. [8] AloT systems can attain ambient intelligence by
utilizing reinforcement learning (RL), which provides a set of
methodologies for addressing the closed-loop difficulty of
processing sensory inputs to make control decisions.

Agents interact directly with their environment to develop
appropriate rules that relate states and actions. These learning
agents must perceive the current environmental state (such as
room temperature) and take appropriate actions (such as
adjusting a thermostat) to influence future states while
optimizing immediate rewards (e.g., maintaining a desired
temperature) and maximizing long-term benefits over time.
Notably supervised learning, in that it needs the agent to
experiment to identify which actions produce the largest long-
term reward. [9]The attacker's purpose in the game is to alter
sensor data in order to change the optimal safe distance between
automobiles, which could increase the likelihood of a collision
or halt traffic. [10]One effective controller for autonomous
robots is reinforcement learning. Since it can now accomplish
tasks automatically by trial and error, it no longer needs prior
knowledge or behavior. However, to accomplish complex tasks,
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a lot of tries are needed. Thus, the assignment that can be
completed with the only simple robots can be considered real. In
light of these considerations, a number of techniques have been
put out to increase. The autonomy, which is the most crucial
aspect of reinforcement learning when applied to robots, is lost
in the methods that employ Maori knowledge. Learning time is

reduced by using the model. Although autonomy is maintained
in this architecture, learned environmental knowledge cannot be
applied to other tasks because the model is task-specific. [11]

FIGURE 1. Reinforcement Learning in Autonomous Systems

The potential for autonomous vehicles to reduce traffic
congestion and increase fuel efficiency and safety is significant.
They are an important trend in contemporary mobility and a
crucial part of the intelligent transportation networks of the
future. With the driving behavior of an experienced driver as the
learning aim, interactions between autonomous vehicles and
traffic environments are modeled in this paper. Road geometry
is incorporated into the stochastic. Vagvala, et al. presented a
study on big data adaptation through distributed cloud systems,
emphasizing the scalability and real-time processing capabilities
of modern data infrastructures. [12] The automated braking

system uses sensor-acquired information about the barrier to
determine possible collision is identified. Four braking levels
make up the action space of the braking control, which is
framed as an optimization problem inside a Markov decision
process (MDP) framework: 1) no braking, 2) mild braking, 3)
moderate braking, and 4) forceful braking. In order to weigh the
advantages of swiftly leaving the risk area against the possible
harm from a collision, a reward function was created. The DQN
model is trained to deal with situations like a person crossing a
city street. According to experimental data, the control agent
maintains optimal braking behavior in a variety of unpredictable
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settings, thereby averting crashes. [13]Unlike traditional rule-
based or predictive models, this system is fully data-driven and
does not rely on preset guidelines. the proposed approach
achieves a 16.3% reduction in energy consumption compared to
conventional binary control methods.The real-time EMS model
is trained and tested using actual commute data from Southern
California. It employs a deep Q-network, integrating Q-learning
with a deep neural network, to make optimal control decisions
in continuous driving environments. Evaluation results confirm
that the approach consistently outperforms traditional binary
control techniques, achieving an average fuel savings of 16.3%.
Future research will focus on further testing with real-world
driving data and implementation on vehicle platforms.
[14]Using simply camera images for AUV control can be
energy-intensive, despite the fact that many deep learning
systems educate artificial agents to make decisions using video
images. Directly collecting rewards from video frames is really
tough. [15] One of the most important and difficult problems for
intelligent cars functioning in dynamic transportation scenarios
is autonomous decision making.

A study evaluates machine learning techniques for
predicting outcomes in 3D printing of composite materials.
Ramancha compares multiple models to enhance production
reliability, making it a valuable contribution to Al-powered
manufacturing processes. [16] One of the biggest challenges in
mobile robotics is still creating clever and reliable autonomous
navigation systems. With the use of expert demonstrations,
inverse reinforcement learning (IRL) provides an effective
method for teaching robots how to carry out particular tasks
without requiring the reward function to be manually specified.
The majority of current IRL methods are used in experiments
with relatively limited state spaces and use the assumption that
the expert policy is optimum and deterministic. But in problems
involving autonomous navigation, the state spaces are usually
enormous, making it difficult for protests to travel to every state.
In the meanwhile, the expert policy can be stochastic and
suboptimal. Neural networks can easily provide an explicit
policy representation, even for stochastic expert rules.
Demonstrate the robot's autonomous navigation skills by
progressing from small-scale experiments to completely
unknown tasks. [17]

MATERIAL AND METHODS
Material
Input Parameters:

Sensor Accuracy (%): This measures how accurate the
sensors (such as LIDAR, radar, cameras, etc.) are in detecting
objects, obstacles, and the environment. A higher sensor
accuracy percentage indicates better detection capability, which
is critical for autonomous systems to make safe and informed

decisions. The higher the accuracy, the better the system can
understand its surroundings and react to environmental shifts.

Processing Power (GHz): This refers to the computational
power of the onboard processor (CPU or GPU) in an
autonomous system. The number of cycles per second that the
processor can manage is expressed in gigahertz (GHz). Higher
processing power allows faster data processing, enabling the
autonomous system to analyze and react to data in real-time,
crucial for decision-making and control tasks in dynamic
environments.

Training Episodes (#): This is the number of iterations
(episodes) the reinforcement learning model has gone through
during training. the autonomous system learns throughout each
episode. More training episodes allow the system to experience
diverse situations and improve its decision-making capabilities,
leading to a more refined and robust model.

Evaluation Parameter:

Average Reward (R): This is a performance metric that
reflects how well the autonomous system is performing in the
task. In reinforcement learning, agents receive rewards for
completing specific actions that align with the goal. The average
reward represents the mean value of all rewards accumulated
during testing or after a set number of actions. A higher average
reward indicates better performance, typically meaning the
system is effectively achieving its objectives, such as navigating
the environment safely and efficiently.

Machine Learning Algorithms
1. Linear Regression

Linear Regression (LR) is a popular statistical and machine
learning method that is frequently used to simulate how
variables relate to one another. One variable tends to rise along
with the other in a positive connection. A negative association,
on the other hand, occurs when one variable rises while the
other falls. By measuring the statistically significant correlation
between one or more variables, linear regression examines these
relationships.

The variables in a linear regression model can be
categorized into two types. The variable that is reliant on the by
y, is the target value that the model seeks to predict or estimate.
The independent variables, denoted by x1, x2, ..., xn, represent
factors that influence or explain the behavior of the dependent
variable.

The simplest form of linear regression is represented by the
equation:

y=c+ mx

where m is the line's slope and c is the y-intercept. With the
intercept ¢ showing the value of y when x is zero and the slope
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m showing how much y varies for every unit change in X, this
equation shows a straight-line relationship between x and y. The
best-fitting line through a collection of data points is described
by this equation.

In statistics, the linear regression equation is often written
as:

y=p0+ p1 x1

Here, B0 is the intercept, and B1 symbolises a basic linear
regression model's slope. . The coefficients B0 and B1 are
estimated using statistical methods that reduce the discrepancy
between the observed and anticipated values of y, like least
squares.

For more complex models, linear regression can involve
multiple independent variables. When multiple predictors are
included in the model, the general equation becomes:

y=p0+ Bl x1 + B2 x2 + ...+ Pn xn

This equation is known as multiple linear regression, where
x1, x2, ..., xn are the independent variables, and each of the
corresponding coefficients B1, B2, ..., Pn represents the change
in y associated with a one-unit change in each of the respective
predictors, assuming the other predictors are held constant.

Linear regression seeks to find the best-fitting line (or
hyperplane in the case of many variables) that minimizes the
error between the regression equation's projected values and the
observed values of y. This inaccuracy is often quantified using a
metric known as the residual sum of squares (RSS), which is the
sum of the squared disparities between observed and anticipated
values.

A Dbasic statistical method for modelling and examining
relationships between variables is linear regression. Whether it's
used for predicting future values, estimating the strength of
relationships, or understanding how different factors influence
an outcome, linear regression provides valuable insights into the
dynamics of various phenomena. By finding the optimal
coefficients that most accurately depict how the dependent and
independent variables are related, linear regression remains a
core tool in both statistics and machine learning.

2. Random Forest Regression

Random forest regression (RFR) is a powerful approach to
predictive modeling in supervised machine learning. It falls
under the category of ensemble methods and is based on
decision tree algorithms. Random forest effectively generates a
bunch of decision trees, each trained on a different dataset
subset. The random forest enhances prediction accuracy by
averaging the outputs of various trees, while lowering the
computational costs associated with storing, training, and
generating predictions with multiple separate models. This

makes random forest very useful for regression problems, where
it is frequently used to forecast continuous values.

The random forest approach works by creating a "forest" of
many decision trees. Every tree in the woods is built
independently, and the random forest's overall projection is the
average of all the individual tree forecasts. The trees themselves
are built using the bagging technique, also known as
bootstrapping, which entails training each tree on a random
subset of the data. Because each tree in the forest is exposed to a
variety of data, this strategy reduces variance and over fitting,
hence enhancing the model's generalizability.

In a random forest model, the decision trees are typically
trained in parallel, making it a highly efficient process that can
be distributed across multiple computing resources. This
parallelism is a key advantage of random forest, as it allows the
algorithm to take advantage of modern computational power,
particularly when working with big datasets.

The output of the random forest regression model is
produced by taking the average of each individual tree.
Mathematically, this can be expressed as:

K
1
Random Forest Prediction = EZ hy (x)
k=1

where Kis the overall quantity of separate regression trees
constructed using the bootstrap samples, and hy(x)symbolises
the forecast provided by the k-th regression tree for vector x as
input . This aggregation of predictions from multiple trees helps
to smooth out errors and make the final prediction more robust.

One of the key benefits of using random forests is that they
are relatively quick to train, especially when in contrast to
alternative machine learning models. This is mostly because of
how parallel the decision trees in the forest. Additionally,
random forests are known for their high accuracy, which stems
from their ability to combine the predictions of many diverse
models and minimize errors through averaging.

The mean squared error (MSE) for out-of-bag (OOB) data
is a frequently used metric to assess a random forest model's
effectiveness. The data points that are not chosen for a particular
decision tree's bootstrap sample are known as "out-of-bag data,"
and they can be utilised to validate the model. The OOB
dataset's MSE is determined by:

n
1
MSEqop = HZ(Yi — 91, 00B)?
i=1
In this equation, y;represents the true worth of the i -th data
point, and y;, 00B is the predicted value for the i- th data point
based on the aggregation of all the decision trees in the forest.
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The sum of squared errors is averaged over all the data points in
the OOB dataset to compute the MSE.

Another important metric for evaluating the random forest
model is the coefficient of determination, often denoted as R?,
which shows the extent to which the model can account for the
variation in the data. . For the OOB dataset, the R? value is
calculated as:

MSCooB

Rypp =1 — ——2
(0]0):4 Var(y)

where Var(y)is the output parameter's overall variance. y .
The R2value gives information about the percentage of the
target variable's volatility that the model can account for. A
higher R?shows that the model fits the data better, whereas a
lower RZimplies that a large portion of the variance cannot be
explained by the model. .

In summary, random forest regression is a highly effective
and efficient ensemble method for predictive modeling. By
building a forest of decision trees, it reduces overfitting and
variance, leading to more accurate predictions. The use of
bagging and parallelism enables random forest to train quickly
and scale well with large datasets. With metrics like MSE and
R2, the performance of a random forest model can be assessed,
providing a reliable measure of its predictive power. Random
forest continues to have gained popularity in machine learning
applications because to their accuracy, efficiency, and
resilience.

3. Support Vector Machines

Support Vector Machines (SVMs) are supervised machine
learning algorithms that are widely used for regression,
classification, and outlier detection. The SVM works by
identifying the optimal hyperplane for dividing data points into
discrete classes. The basic goal is to maximize the gap between
data points from various classes while minimizing classification
errors. Support Vector Machines (SVM) are based on the
principle of determining the optimum hyper plane to partition
data points in a higher-dimensional space. This makes the data
linearly separable when it is not in its native space.

The primary purpose of SVM is to identify a hyper plane
that maximizes the distance between classes. A hyper plane is a
decision border that separates data points into two groups during
a binary classification operation. This would depict both a two-
dimensional line and a three-dimensional plane. SVM, however,
can function in any number of dimensions. The SVM algorithm
is designed to find the highest margin, or the greatest distance
between the hyper plane and the closest data points in each
class. These nearest points, also known as support vectors, are
important since they determine the hyper plane’s location and
direction. Binary classification

Let’s consider the case of a binary classification problem
where the goal is to classify data points into one of two classes:
+1 and -1. Given a training dataset
(L yh), (x*x2,y2), ..., (x", y™)} , where x! represents a feature
vector and y' € {—1,+1}is the corresponding class label, we
aim to find a hyperplane defined by the equation:

w-Xx+b=0
where:
w is the weight vector perpendicular to the hyper plane.
b is the bias term.

X represents any point in the input space.

The objective is to maximize the margin el which

corresponds to minimizing ||w||, subject to the constraint that
each data point is correctly classified. For any data point x;, the
classification rule is:

yi(lw-xi+b) =1

This ensures that all data points are correctly classified with
a margin of at least 1 from the hyperplane. Thus, the
optimization problem becomes:

1
min— ||w||*subject to yi(w - xi+b) 2 L,i=12,..,n
w

Kernel Trick

SVM use the kernel trick to translate data into a higher-
dimensional space where it becomes linearly separable when the
data is not linearly separable in its original space. SVM use a
kernel function to calculate the transformation rather than doing
so explicitly. K (x,x")that calculates the higher —
dimensional space’s inner product

Kxx) = o) - o)

where ¢(x) is the mapping function. Common kernel
functions include:

Linear kernel: K(x,x") = x - X’

Polynomial kernel: K(x,x") = (x - x' + ¢)¢

Radial Basis Function (RBF) kernel: K(x,x") = exp(—y Il
x—x 1)?

SVM is computationally efficient because of the kernel
trick, which enables it to function in higher-dimensional spaces
without explicitly calculating the converted coordinates.

Support Vectors Support vectors are the data points closest
to the hyper plane. These details are essential for establishing
the optimal hyper plane. If the support vectors are removed, the
position and orientation of the hyper plane could change
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significantly. Therefore, SVM focuses on these critical points to
make decisions about the hyper plane. In the equation for
classification, when figuring out the best decision boundary, the
support vectors are crucial.

SVM for Regression (SVR)In addition to classification,
Regression issues, in which the objective is to predict a
continuous output rather than classifying data points. This is

called Support Vector Regression (SVR). In SVR, the objective
is to find a function that keeps the margin between the data
points and the regression line while departing from the actual
values by no more than a given amount (or hyper plane in
higher dimensions). The optimization problem for SVR is
slightly different but follows the same principles of maximizing
margins while minimizing errors.

RESULT AND DISCUSSION
TABLE 1.Reinforcement Learning in Autonomous Systems
Sensor Accuracy (%) Processing Power (GHz) Training Episodes Average Reward (R)
#)
85 2.5 500 200
90 3 1000 300
80 1.8 800 180
95 22 600 240
88 2.8 700 260
92 3.5 1200 320
86 2 900 210
89 2.7 750 270
91 3.1 1100 310
84 1.9 550 190
87 23 950 220
93 32 1300 330
82 1.7 600 160
96 3.6 1500 350
83 2.1 500 170
94 33 1400 340
89 2.6 1000 290
88 29 1250 310
85 2.4 600 200
92 3.4 1600 360
81 L5 400 150
97 3.8 2000 400
84 2 750 180
86 22 500 190
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90 3 1000 280
93 34 1800 390
82 1.6 700 160
91 32 1300 300
95 3.7 1700 370
88 2.5 900 250

Table 1 presents a summary of various parameters relevant
to reinforcement learning in autonomous systems. Each row
corresponds to a different scenario, showcasing the relationship
between sensor accuracy, processing power, training episodes,
and the average reward obtained by the system. Sensor
accuracy, ranging from 80% to 97%, represents the
effectiveness of the system's sensors in detecting and responding
to the environment. Processing power, indicated in GHz, varies
from 1.5 GHz to 3.8 GHz, showing the computational capacity
available for training and decision-making.

Training episodes, from 400 to 2000, refer to the number of
iterations the system undergoes to learn optimal behavior. The

TABLE 2. Descriptive Statistics

average reward (R), spanning from 150 to 400, reflects the
system's performance, with higher rewards indicating better
overall results. Notably, there appears to be a trend where higher
sensor accuracy and increased processing power generally
correlate with more training episodes and higher average
rewards. For instance, scenarios with sensor accuracy of 96%
and processing power of 3.8 GHz yield the highest reward of
400, indicating that greater resources contribute to improved
system performance. Conversely, lower sensor accuracy and
reduced processing power result in lower rewards, highlighting
the importance of optimized hardware and efficient training
processes in reinforcement learning systems.

Sensor Processing Power Training Average
Accuracy (%) (GHz) Episodes (#) Reward (R)

c 30.000000 30.000000 30.000000 30.000000
ount

m 88.533333 2.663333 995.000000 262.666667
ean

s 4.732378 0.672865 429.584804 75.563781
td

m 80.000000 1.500000 400.000000 150.000000
in

2 85.000000 2.125000 625.000000 192.500000
5%

5 88.500000 2.650000 925.000000 265.000000
0%

7 92.000000 3.200000 1287.500000 317.500000
5%

m 97.000000 3.800000 2000.000000 400.000000
ax

Table 2 presents the descriptive statistics of the dataset,
offering a summary of key metrics across four parameters:

sensor accuracy, processing power, training episodes, and
average reward. For each parameter, we can observe the
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following Sensor Accuracy has a mean of 88.53% and a
standard deviation of 4.73%. The minimum accuracy recorded
is 80%, while the maximum is 97%. The interquartile range
(IQR) shows that 50% of the data falls between 85% and 92%,
indicating a slight concentration around the higher accuracy
levels. Processing Power has an average of 2.66 GHz with a
standard deviation of 0.67 GHz. The range spans from 1.5 GHz
(min) to 3.8 GHz (max), suggesting a moderate variation in
processing power across the data. The IQR between 2.13 GHz
and 3.2 GHz shows that most systems tend to have processing
power in this range. Training Episodes has an average of 995,
with a substantial spread as indicated by the standard deviation

of 429.58. The range spans from 400 to 2000 episodes, with the
IQR between 625 and 1287 episodes, indicating a wide range of
training durations across systems. Average Reward has a mean
of 262.67, with a standard deviation of 75.56, demonstrating a
moderate variability. The IQR lies between 192.5 and 317.5,
showing that most systems yield rewards within this range, with
the highest recorded reward reaching 400. Overall, the data
demonstrates a broad variability in the performance and
configuration of autonomous systems, with higher sensor
accuracy and processing power generally correlating with higher

rewards.

Effect of Process Parameters
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FIGURE 2 . Scatter plot of the various Reinforcement Learning in Autonomous Systems process parameters
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The scatter plot matrix in Figure 2 visualizes the
relationships among various reinforcement learning parameters
in autonomous systems, including Sensor Accuracy (%),
Processing Power (GHz), Training Episodes (#), and Average
Reward (R). Each diagonal subplot represents the histogram of a
specific parameter, showing its distribution. The off-diagonal
scatter plots illustrate pair wise relationships between these
parameters. From the scatter plots, a positive correlation is
evident between Sensor Accuracy and Average Reward,
suggesting that higher accuracy contributes to better learning
outcomes. Similarly, Processing Power exhibits a strong
positive correlation with Training Episodes and Average

o

o --

racy (%) -
er (GHz) -

0.79

- -
Episodes (#) - 0.79 0.86 0.93

Reward, indicating that higher computational capability
enhances learning efficiency. The number of Training Episodes
also positively influences the Average Reward, implying that
extended training generally results in improved performance.
These insights suggest that optimizing Sensor Accuracy,
Processing Power, and the number of Training Episodes can
significantly enhance the reinforcement learning process in
autonomous systems. The data patterns highlight key
dependencies that can guide improvements in system design and
training strategies for better decision-making and adaptation in
dynamic environments.
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FIGURE 3. Correlation heat map between the process parameters and the responses

Figure 3 presents a correlation heat map illustrating the
relationships between various process parameters and response
variables in reinforcement learning for autonomous systems.
The heat map quantitatively represents the correlation
coefficients, ranging from -1 to 1, where values closer to 1
indicate a strong positive correlation, and values near 0 suggest
little to no correlation. From the heat map, Sensor Accuracy (%)
shows a high positive correlation with Average Reward (R)

(0.91), indicating that more accurate sensors contribute
significantly to better learning outcomes. Additionally, Sensor
Accuracy has a strong correlation with Processing Power (0.89),
suggesting that systems with greater computational power tend
to support higher sensor accuracy.

Processing Power (GHz) has the highest correlation with
Average Reward (0.96), implying that increased processing
capabilities lead to improved reinforcement learning
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performance. Furthermore, Processing Power also correlates
strongly with Training Episodes (0.86), suggesting that higher
computational capacity allows for more training iterations,
ultimately enhancing learning efficiency. Training Episodes (#)
and Average Reward (R) are also highly correlated (0.93),
demonstrating that longer training durations yield better
reinforcement learning outcomes. This relationship highlights
the importance of extensive training in optimizing system
performance.

Additionally, Training Episodes exhibit a moderate
correlation with Sensor Accuracy (0.79), suggesting that
accuracy improvements benefit from prolonged learning. these
strong positive correlations emphasize the interdependence of
computational power, sensor accuracy, training duration, and
learning performance. Optimizing these parameters can
significantly enhance reinforcement learning efficiency in
autonomous systems, ensuring better decision-making and
adaptability in dynamic environments.

Linear Regression
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FIGURE 4. Predictive performance of the linear regression predictive model in Reinforcement Learning in Autonomous Systems

(a) train; (b) test.

Figure 4 presents the predictive performance of a linear
regression model in reinforcement learning for autonomous
systems, using training data. (a) The scatter plot compares the
actual average reward (R) with the predicted average reward
(R). The dashed diagonal line represents the ideal scenario
where predicted values perfectly match actual values. From the
plot, the data points are closely aligned along the diagonal,
indicating that the linear regression model achieves a strong fit
to the training data. This suggests a high correlation between the
input features (such as sensor accuracy, processing power, and
training episodes) and the predicted reward. The model
effectively captures the underlying pattern in the data, showing
minimal deviations from the ideal line.

However, slight deviations from the diagonal line can be
observed, which may indicate minor prediction errors due to

inherent noise in the data or limitations of linear regression in
capturing complex, nonlinear relationships. Despite this, the
overall performance suggests that the model generalizes well
within the training set. This analysis confirms that linear
regression is a useful tool for approximating reward functions in
reinforcement learning, especially when relationships between
parameters are primarily linear. Future improvements could
involve nonlinear models such as decision trees or neural
networks for better handling of complex dependencies. The
figure (b) presents a scatter plot comparing the predicted and
actual average rewards (R) for testing data in a reinforcement
learning-based autonomous system. The x-axis represents the
actual average reward, while the y-axis denotes the predicted
average reward obtained from a linear regression model. The
dashed diagonal line serves as the ideal reference line, where
perfect predictions would lie, indicating a 1:1 correspondence
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between predicted and actual values. Observing the plotted
points, the model demonstrates a reasonable predictive
performance, as the points are relatively close to the diagonal
line. However, some deviations exist, particularly in lower and
mid-range values, suggesting minor prediction errors.

These discrepancies could result from limitations in the
linear regression model, potential over fitting to training data, or
inherent stochasticity in reinforcement learning environments.

Random Forest Regression

Despite these minor errors, the model generally captures the
trend of the actual rewards, making it a useful tool for
estimating expected rewards in autonomous system decision-
making. This evaluation highlights the effectiveness of linear
regression in predicting performance metrics in reinforcement
learning scenarios, although more sophisticated models, such as

neural networks or ensemble learning techniques, could enhance
predictive accuracy further.
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FIGURE 5. Effect of number of repressor in random forest regression on Number of Estimators vs Mean Squared Error

The figure 5 illustrates the relationship between the number
of estimators in a random forest regression model and the
corresponding mean squared error (MSE). The x-axis represents
the number of estimators (trees) in the random forest, while the
y-axis denotes the MSE, a key metric for evaluating model
performance. The plot shows a general decreasing trend in MSE
as the number of estimator’s increases, suggesting that a larger
number of trees improves model accuracy by reducing
prediction error. Initially, MSE fluctuates slightly for lower
values of estimators, indicating some instability in performance.
However, beyond approximately 400 estimators, there is a
significant drop in MSE, followed by a more gradual decline as

the number of estimator’s approaches 1000. This trend aligns
with the expectation that increasing the number of trees
enhances predictive accuracy by reducing variance and
preventing over fitting to training data. The diminishing returns
observed at higher estimator values suggest that beyond a
certain point, additional trees contribute marginally to error
reduction. Therefore, an optimal number of estimators must be
selected to balance computational efficiency and model
performance. This analysis highlights the importance of tuning
hyper parameters in random forest regression to achieve an
optimal trade-off between accuracy and efficiency.
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FIGURE 6. Effect of number of repressor in random forest regression on Number of Estimators vs Mean Absolute Error

The figure 6 presents the relationship between the number

of estimators in a random forest regression model and the R?
score, a key metric that measures how well the model explains
the variance in the data. The x-axis represents the number of
estimators (trees), while the y-axis denotes the R? score, which
ranges between 0 and 1, with higher values indicating better
model performance. The plot shows a general increasing trend,
suggesting that as the number of estimator’s increases, the
model's predictive power improves. Initially, the R? score
exhibits fluctuations, indicating some instability when the
number of estimators is low. However, after approximately 400

estimators, there is a significant rise in R?, followed by a steady

improvement as more estimators are added. Beyond 600

estimators, the improvements become more gradual, with

diminishing returns in predictive performance. This trend
suggests that increasing the number of trees enhances the
model's ability to generalize but only up to a certain point.
Beyond an optimal number of estimators, additional trees
provide marginal improvements while increasing computational
cost. Therefore, selecting an appropriate number of estimators is
crucial to balancing model accuracy and efficiency in random

forest regression.
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The provided 7 graph illustrates the relationship between
the number of estimators and the mean absolute error (MAE) in
a random forest regression model. As the number of estimators
increases, the MAE tends to decrease, indicating improved
model performance. Initially, with a lower number of estimators
(e.g., around 200), the MAE is relatively high, suggesting that
the model is not yet fully stable and may suffer from high
variance. As the number of estimators increases beyond 400, a
noticeable decline in MAE occurs, signifying better predictive
accuracy and reduced variance. This trend continues, with
diminishing returns, as the number of estimators approaches
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1000. The fluctuation in MAE at lower estimator values may be
due to insufficient ensemble averaging, which stabilizes as more
trees are added. The graph suggests that increasing the number
of estimators improves model performance up to a point,
beyond which the gains become marginal. This aligns with the
principle that a larger ensemble reduces over fitting and
variance in predictions, ultimately enhancing generalization.
However, excessive estimators can lead to computational
inefficiency without significant performance improvement. In
practical applications, an optimal number of estimators should
be chosen to balance accuracy and computational cost.
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FIGURE 8. Predictive performance of the random forest regression predictive model inReinforcement Learning in Autonomous

Systems a) train b) test
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The provided a) graph illustrates the predictive performance
of a random forest regression model in reinforcement learning
for autonomous systems using training data. The plot compares
the actual average reward (x-axis) with the predicted average
reward (y-axis). The data points align closely with the dashed
diagonal line, indicating a strong correlation between predicted
and actual values. This suggests that the model effectively
captures the underlying patterns in the training data, leading to
highly accurate predictions. The minimal deviation from the
diagonal line implies low prediction error, signifying that the
model has learned well from the training dataset.

However, while high accuracy on training data is desirable,
it is essential to evaluate the model on unseen test data to assess
its generalization ability. Over fitting could be a concern if the
model performs exceptionally well on training data but poorly
on new data. In reinforcement learning applications for
autonomous systems, precise reward prediction is crucial for
making optimal decisions and improving system performance.
The high correlation observed in this graph suggests that the
random forest model can serve as a reliable predictor for
estimating rewards, ultimately aiding in more effective learning
and decision-making in autonomous environments. The
provided b) graph illustrates the predictive performance of a

random forest regression model in reinforcement learning for
autonomous systems using testing data. The plot compares the
actual average reward (x-axis) with the predicted average
reward (y-axis). Unlike the training data performance, where the
predictions closely followed the diagonal line, this test data plot
shows a much sparser distribution with only a few data points.
While some predictions align relatively well with the actual
values, others deviate more noticeably from the ideal diagonal
line, suggesting reduced model accuracy on unseen data. his
discrepancy may indicate potential over fitting, where the model
has learned the training data patterns well but struggles to
generalize to new data.

The small number of test samples further limits the ability
to fully assess the model's performance, making it crucial to
evaluate on a larger test set. In reinforcement learning for
autonomous systems, reliable reward prediction is essential for
effective  decision-making and long-term performance
improvements. If the model does not generalize well, it may
lead to suboptimal policies or incorrect estimations of rewards.
To enhance generalization, techniques such as hyper parameter
tuning, feature selection, or increasing the training data diversity
could be considered to improve robustness in real-world
scenarios.

Support Vector Machines
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FIGURE 8. Predictive performance of the random forest regression predictive model in Reinforcement Learning in Autonomous

Systems a) train b) test

This scatter plot (Figure 8) a) demonstrates the predictive
performance of a random forest regression model in the context
of reinforcement learning, specifically showing the relationship
between predicted and actual average rewards during training.
The x-axis represents the actual average reward (R) values,

while the y-axis shows the predicted average reward values
generated by the model. The plot reveals a strong linear
correlation between predicted and actual values, as evidenced by
the points closely following the dashed diagonal line (which
represents perfect prediction where predicted = actual). The data
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points span from approximately 150 to 400 reward units,
showing a consistent prediction accuracy across different reward
magnitudes.

The tight clustering of points around the diagonal line
suggests that the random forest model has achieved high
predictive accuracy with minimal variance in its predictions.
The model appears to perform particularly well in the middle
range of rewards (between 250-350), where the points almost
perfectly align with the ideal prediction line. There's slightly
more scatter at the lower and higher ends of the reward
spectrum, which is common in machine learning models as they
typically have less training data in these extreme regions.
Overall, this visualization indicates that the random forest
regression model has successfully captured the underlying
patterns in the reinforcement learning system's reward structure
and can make reliable predictions about expected rewards
during training. This scatter plot b) shows the testing
performance of the random forest regression model on unseen
data, evaluating how well the model generalizes beyond its
training examples. The graph plots predicted average rewards
against actual average rewards (R), with a dashed diagonal line

representing perfect predictions. The testing data contains
notably fewer points compared to the training plot, which is
typical as testing sets are usually smaller than training sets. The
data points are distributed across three main regions: one around
200, another around 300, and one around 350 on the reward
scale.

These points generally align well with the diagonal line,
suggesting that the model maintains good predictive accuracy
on new, unseen data. The presence of accurate predictions on
test data indicates that the random forest model has avoided
over fitting and successfully learned generalizable patterns from
the training data. The model appears to maintain consistent
performance across different reward levels, though with slightly
less data to evaluate compared to the training set. This sparse
but accurate distribution of test points suggests the model is
robust and reliable for practical applications in predicting
rewards for autonomous systems. The close alignment with the
diagonal line, particularly in the middle range (around 300-350),
demonstrates that the model's predictions remain reliable when
faced with new scenarios not seen during training.

TABLE 3. Regression Model Performance Metrics (Training Data)

D Sy Model R2 E MS RM MA Max MS Med
ata mbol VS E SE E Error LE AE
T LR Linear 0.96 9. 180. 13.4 11.7 27.5 0.00 1.12
rain Regression 8202 68E- 0341 1768 8375 3653 2766 E+01
01
T RF Random 0.99 9. 38.6 6.21 5.31 12.3 0.00 5.15
rain | R Forest 3174 93E- 4644 6626 8951 0588 E+00
Regression 01
T SV Support 0.98 9. 63.8 7.99 4.54 23.1 0.00 2.12
rain | R Vector 8722 89E- 5022 0633 9631 4915 131 E+00
Regression 01

Table 3 presents the performance metrics of three
regression models (Linear Regression, Random Forest
Regression, and Support Vector Regression) on the training
data. The key metrics provided include R?, Explained Variance
Score (EVS), Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), Maximum Error
(MaxError), Mean Squared Logarithmic Error (MSLE), and
Median Absolute Error (MedAE). Linear Regression (LR): The
model achieves a high R? value of 0.968, indicating that it
explains approximately 96.8% of the variance in the data. The
MSE of 180.03 and RMSE of 13.42 suggest a moderate error in
predictions. The MAE of 11.78 reflects the average absolute
deviation, and the MaxError of 27.54 indicates the largest

discrepancy between predicted and actual values. The MSLE
and MedAE are relatively small, showing that the errors are
well-distributed. Random Forest Regression (RFR): This model
performs exceptionally well, with an R? of 0.993, suggesting
99.3% of the variance is explained. It has a much lower MSE
(38.65) and RMSE (6.22), indicating very accurate predictions.
The MAE (5.32) and MaxError (12.3) are also low, indicating
fewer large errors compared to LR. Support Vector Regression
(SVR): SVR also shows strong performance, with an R? of
0.989, indicating 98.9% variance explained. The MSE and
RMSE are moderate (63.85 and 7.99), with an MAE of 4.55 and
a higher MaxError of 23.15. Random Forest Regression
outperforms the other two models in terms of accuracy and error
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metrics, followed by SVR, with Linear Regression showing the
least favorable results. This study evaluates machine learning
techniques for predicting outcomes in 3D printing of composite

materials. Mishra, et al. Introduce a hybrid MOORA method
for reverse logistics provider selection, supporting circular
economy models.[20]

TABLE 4. Regression Model Performance Metrics (Testing Data)

D Sy Model R2 E MS RM MA Max MS Med
ata mbol VS E SE E Error LE AE
T LR Linear 0.96 9. 152. 12.3 10.0 19.0 0.00 9.62
est Regression 1968 87E- 9714 6816 1099 9648 2071 E+00
01
T RF Random 0.94 9. 207. 14.4 13.0 18.2 0.00 1.65
est R Forest 8399 91E- 5517 0666 1889 0667 3492 E+01
Regression 01
T SV Support 0.92 9. 292. 17.1 11.0 29.4 0.00 2.92
est R Vector 7185 55E- 8799 1373 1116 9082 294 E+00
Regression 01

Table 4 presents the performance metrics of the three
regression models (Linear Regression, Random Forest
Regression, and Support Vector Regression) on the testing data,
providing insight into how well these models generalize to
unseen data. Linear Regression (LR): The model shows strong
performance with an R? of 0.9619, meaning it explains about
96.2% of the variance in the testing data. The MSE (152.97) and
RMSE (12.37) indicate moderate prediction errors. The MAE of
10.01 reveals that the average absolute deviation is relatively
low, while the MaxError of 19.1 indicates that the largest
prediction error is smaller compared to other models. The
MSLE and MedAE are also reasonably small, suggesting good
model fit with some outliers. Random Forest Regression (RFR):
This model has an R? of 0.9484, explaining 94.8%a of the

CONCLUSION

In order for autonomous systems to adjust and operate at
their best in changing contexts, reinforcement learning, or RL,
has become an essential approach. The effectiveness of the
learned policies and the overall system performance are
determined by the average reward (R), the main evaluation
parameter. When it comes to autonomous systems,
reinforcement learning algorithms are essential for figuring out
the best course of action through experimenting and interacting
with the environment. The number of training episodes,
processing power, and sensor precision are some of the
variables that affect how efficiently the learning process works.
Increased sensor precision improves state observations'
dependability and lowers decision-making uncertainty. The
learning algorithm's efficiency is directly impacted by

variance. Although it performs well, the MSE (207.55) and
RMSE (14.41) are higher than those of Linear Regression,
indicating slightly more prediction error. The MAE of 13.02 and
MaxError of 18.21 suggest that the model occasionally makes
larger errors, but still performs relatively well. Support Vector
Regression (SVR): SVR exhibits the lowest R? value of 0.9272,
explaining 92.7% of the variance. The MSE (292.88) and
RMSE (17.11) are the highest among the models, reflecting
greater prediction errors. The MAE (11.01) and MaxError
(29.49) are also larger, indicating that SVR has a tendency to
make more significant errors in its predictions. Linear
Regression performs the best on the testing data, followed by
Random Forest Regression, with Support Vector Regression
showing the least favorable results in terms of error metrics.

processing power, which is expressed in GHz and determines
the speed and complexity of calculations.

The quantity of training episodes is essential for enabling
the RL agent to efficiently explore and take advantage of its
surroundings, which eventually raises the average rewards.
When it comes to managing intricate interactions between
variables and identifying non-linear patterns that affect the
reward function, Support Vector Machines (SVMs), especially
in regression settings (SVR), are excellent. Applying these
techniques aids in optimizing system settings and enables a
greater comprehension of the elements influencing RL
performance. Experiments show that RL results in autonomous
systems are much improved by adjusting input parameters.
Increased sensor accuracy results in more accurate depictions of
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the surroundings, which lowers incorrect actions and enhances
the quality of decisions. Real-time adaptation is made possible
by faster training and inference times brought about by
increased processor capacity. More training episodes enable
more thorough investigation, which results in improved policies
and better average rewards. However, after a given number of
training cycles, where additional learning gains become
negligible, declining returns could be seen. Implementing RL in
autonomous systems is difficult, despite its benefits. Particularly
in complicated contexts that need for deep reinforcement
learning (DRL) structures, computational demands might be
significant. Furthermore, it is still difficult to guarantee
generalization across many contexts because policies that have
been trained in controlled environments might not necessarily
translate well to practical implementations.
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