ARTICLE

doi: http://dx.doi.org/10.55124/csdb.v2i3.257

ScifForce

International Journal of Computer Science and Data
Engineering
Journal homepage: www.sciforce.org

Enhanced Framework for Big Data Adaptation Using Hybrid DEMATEL-Based
Decision Modeling and Scalable Distributed Analytics

Dr. Popuri Ramesh Babu

Dean & professor, Department of Computer science & Engineering, Malineni Lakshmanah Womens
Engineering college , Guntur, India

ARTICLE INFO ABSTRACT

Article history: In the era of digital transformation, Big Data adaptation has emerged as a critical
Received: 20250627 capability for organizations striving to leverage massive and diverse data streams for
Received in revised form: 20250629 strategic decision-making, operational efficiency, and innovation. Traditional methods
Accepted: 20250705 for evaluating Big Data adoption—such as the DEMATEL (Decision-Making Trial
Available online: 20250718 and Evaluation Laboratory) technique—have provided valuable insights into the

cause-and-effect relationships among various influencing factors. However, these

Kgy words: . methods often fall short in handling uncertainty, dynamic dependencies, and
Eﬁz]?/alt)aE‘i/?sztEtion, scalability challenges posed by real-world distributed data environments.This paper
ANP ’ proposes an enhanced and robust framework for Big Data adaptation that integrates
COPi{AS, hybrid decision-making models with distributed analytics platforms. The core of our
Apache Spark, methodology is a fusion of Fuzzy DEMATEL, Analytic Network Process (ANP), and
MCDM, COPRAS (Complex Proportional Assessment), offering a comprehensive multi-
Causal Inference. criteria decision-making (MCDM) system. Fuzzy DEMATEL accommodates

vagueness in expert opinions and quantifies interdependencies among critical
adaptation factors—such as Compatibility, Perceived Benefits, Technology
Resources, Security & Privacy, and Trialability. ANP and COPRAS enhance
prioritization robustness and validate consistency across multiple ranking
methods.Furthermore, the framework incorporates Apache Spark to simulate real-time
Big Data scenarios, enabling high-speed data ingestion, processing, and analytics. We
also introduce Bayesian Networks for probabilistic causal inference, strengthening the
understanding of directional relationships among adaptation variables.

The experimental setup includes synthetic and semi-real datasets to model
enterprise-scale Big Data environments. Comparative results demonstrate that
“Compatibility” remains the dominant driver in Big Data adoption across all models,
while “Trialability” continues to exert the least influence.To ensure result credibility,
we apply validation metrics including the Influence Degree Index (IDI), Entropy
Weight Method (EWM), and Consistency Ratio (CR). The results affirm the
reliability, accuracy, and scalability of the proposed hybrid approach. A key strength
of the framework lies in its ability to integrate subjective expert feedback with
objective data-driven simulation, offering a holistic view of Big Data readiness and
adoption dynamics.In addition, the paper explores future research directions such as
the integration of Edge/Fog Computing using TinyML, Blockchain-based data
governance for secure sharing, Explainable Al (XAI) methods like SHAP and LIME
to ensure transparency in model decisions, and Federated Learning for privacy-
preserving model training across distributed data sources. These innovations not only
strengthen the technical foundations of the framework but also ensure its long-term
relevance in evolving enterprise ecosystems
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Introduction

In today’s data-driven era, the ability of organizations to adapt
to Big Data environments is no longer optional—it is a critical
strategic imperative. Big Data adaptation refers to the structured
integration of data-centric technologies, infrastructures, and
practices into core business processes. With the exponential
growth in data sources, such as IoT devices, cloud platforms,
mobile applications, and social networks, enterprises are facing
mounting challenges in extracting meaningful insights, ensuring
data quality, and aligning data systems with organizational
objectives. Successful adaptation requires a robust analytical
framework capable of handling not only the scale and
complexity of Big Data but also the wuncertainty and
interdependence inherent in real-world decision environments.

Traditional evaluation techniques, such as the DEMATEL
(Decision-Making Trial and Evaluation Laboratory) method,
have proven useful in modeling causal relationships among Big
Data adaptation factors. However, conventional DEMATEL
lacks the flexibility to manage vagueness in expert opinions,
quantify dependency strength, or operate in highly distributed
and real-time systems. To address these limitations, recent
research has introduced advanced variations like fuzzy
DEMATEL, hierarchical DEMATEL, and integrated hybrid
models to improve decision robustness and interpretability.

This paper builds upon these advancements by proposing a
comprehensive and scalable framework for Big Data adaptation.
The framework combines Fuzzy DEMATEL, Analytic Network
Process (ANP), and COPRAS (Complex Proportional
Assessment) to deliver a multi-layered, explainable, and
mathematically rigorous decision model. The approach is
designed to quantify the influence of key adaptation factors such
as Compatibility, Technology Resources, Security and Privacy,
Perceived Benefits, and Trialability. Additionally, the model
leverages Bayesian Networks to analyze probabilistic cause-
effect relationships, and integrates with Apache Spark to
perform large-scale simulations in real time.

Unlike prior approaches that relied solely on expert opinion or
static matrices, the enhanced framework introduced here
supports dynamic modeling through distributed computing and
causal inference. It provides robust decision support in high-
velocity environments while also addressing uncertainty and
conflicting expert judgments. The study incorporates synthetic

and semi-real datasets to simulate enterprise-scale Big Data
ecosystems and validates the ranking consistency through
metrics such as the Influence Degree Index (IDI), Entropy
Weight Method (EWM), and Consistency Ratio (CR).

Ultimately, this research advances the methodological and
computational foundation for Big Data adaptation and sets the
stage for future enhancements involving Explainable Al,
Blockchain-based security, Edge Computing, and Federated
Learning.

In the evolving Ilandscape of digital transformation,
organizations are increasingly dependent on Big Data
technologies to extract insights, optimize decision-making, and
improve operational outcomes. However, adapting to Big Data
environments is not without its challenges. Factors such as
interoperability between technologies, data security, privacy
regulations, and the complexity of managing vast heterogeneous
datasets demand structured and intelligent frameworks for
effective adaptation.

One promising approach to address these complexities is the
use of multi-criteria decision-making (MCDM) techniques that
can evaluate and prioritize adaptation factors based on cause-
and-effect relationships. The DEMATEL (Decision-Making
Trial and Evaluation Laboratory) method has long been
employed to analyze such relationships. Enhancements to this
method have significantly expanded its capabilities. For
instance, the fuzzy DEMATEL method integrates fuzzy logic to
handle uncertainty and imprecision in expert evaluations [1].
Building on this, hierarchical DEMATEL models allow for a
layered analysis of criteria within multi-level systems, enabling a
more granular understanding of influence dynamics [2].

To deal with inconsistent or contradictory expert inputs,
researchers have proposed combining DEMATEL with evidence
theory, which improves decision reliability by fusing conflicting
data [3]. Applications in supply chain and procurement
demonstrate its real-world effectiveness, particularly in supplier
selection scenarios using fuzzy causal modeling [4]. In the
domain of safety-critical decision-making, the method has been
refined to evaluate risks and enhance management strategies [5].

The robustness of DEMATEL results is further strengthened
by techniques that measure consistency and stability of the
matrices used [6]. The approach also finds utility in knowledge
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management, helping organizations to identify and segment
critical success factors [7]. By combining DEMATEL with the
Ordered Weighted Averaging (OWA) operator, risk assessment
in complex systems such as manufacturing has become more
data-driven and structured [8]. Applications in sustainable
supply chain management underscore its adaptability to
environmental and operational decision contexts [9].
Additionally, modern variants of DEMATEL now incorporate
both subjective judgments and objective data, making the
method highly relevant for data-rich, real-time systems [10].

Building on these advancements, this paper presents an
enhanced framework for Big Data adaptation by integrating
fuzzy DEMATEL with ANP, COPRAS, and scalable analytics
using Apache Spark. The proposed model is designed to address
uncertainty, scalability, and causal inference in dynamic data
environments.

Materials and Methods:

Compatibility:In the context of Big Data adaptation,
compatibility refers not only to technological alignment but also
to strategic and functional coherence across systems,
applications, and platforms. Effective Big Data integration
depends on seamless interoperability between legacy systems,
cloud infrastructures, data lakes, and analytical engines. Our
enhanced model evaluates compatibility using a Fuzzy
DEMATEL approach to capture uncertainty in expert
assessments of system alignment. The fuzzy method allows the
model to quantify imprecise linguistic feedback (e.g., “highly
compatible”, “partially aligned”) and analyze their causal
influence on other factors like technology resources and
perceived benefits. Compatibility is also modeled using a
Bayesian Network to analyze probabilistic dependencies
inadoption failures caused by infrastructure mismatches.
Through Apache Spark-based simulation, we test cross-platform
data flow efficiency under varying levels of compatibility,
measuring processing speed, integration latency, and failure
tolerance. The model reveals that compatibility has the strongest
influence on all other factors, acting as a foundational driver in
the successful adaptation of Big Data systems. Organizations
with high compatibility experience smoother transitions, greater
scalability, and lower integration costs, positioning themselves
more effectively for future AI/ML adoption.

Perceived Benefits:

Perceived benefits represent the value organizations expect to
gain from adopting Big Data technologies. These may include

improved strategic decision-making, enhanced customer
understanding, operational efficiency, real-time analytics, and
competitive advantage. In our enhanced framework, perceived
benefits are evaluated using Fuzzy DEMATEL to analyze how
expectations influence and are influenced by other critical
adaptation criteria. Experts provide assessments using linguistic
variables mapped to triangular fuzzy numbers, which are then
integrated into the causal matrix. The Analytic Network Process
(ANP) further refines the analysis by modeling
interdependencies between perceived benefits, compatibility,
and security. Additionally, we simulate business performance
using Apache Spark to compare baseline KPIs with outcomes
derived from Big Data implementation, thereby validating
perceived benefits through real-time data. Bayesian Networks
are employed to estimate the likelihood of success or resistance
based on the strength of perceived value. This hybrid approach
helps quantify both tangible (e.g., cost savings) and intangible
(e.g., innovation, agility) benefits. Organizations with strong
belief in the value proposition of Big Data are shown to adopt
technologies more proactively, allocate better resources, and
experience higher returns on investment.

Technology Resources:

Technology resources refer to the tools, systems,
infrastructure, and skilled personnel necessary for successful Big
Data adaptation. In a distributed and data-intensive environment,
the presence of scalable cloud platforms, real-time analytics
engines, robust storage systems, and expert teams is crucial. Our
enhanced model integrates expert evaluations of resource
adequacy using fuzzy scales, enabling uncertainty-tolerant input
into the DEMATEL framework. The Fuzzy DEMATEL method
quantifies the influence of technology resources on dependent
factors like trialability and perceived benefits. The ANP
component models reciprocal relationships—e.g., how
investments in technical infrastructure improve perceived
benefits, which in turn justify further resource allocation.
Apache Spark is used to simulate real-world conditions, such as
data ingestion speed, processing latency, and compute workload
across clusters, helping validate infrastructure performance.
Additionally, Bayesian Networks allow us to predict the
probabilistic impact of resource gaps on system failure or
adoption delays. Through this multi-dimensional analysis,
technology resources are identified as both an enabler and
constraint. High-performing technical infrastructures not only
facilitate data analysis but also reduce operational risks,
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accelerate deployment timelines, and enhanceorganizational
confidence in Big Data transformation efforts.

Security and Privacy:

In modern data ecosystems, security and privacy are vital
prerequisites for Big Data adaptation. With increasing volumes
of sensitive data—from personal identifiers to financial
records—organizations must ensure data confidentiality,
integrity, and regulatory compliance. Our enhanced framework
considers security and privacy across five dimensions: access
control, data encryption, anonymization, compliance adherence
(e.g., GDPR), and infrastructure resilience. Expert opinions on
security maturity are collected using linguistic inputs and
converted into fuzzy values for DEMATEL analysis. This
reveals how concerns over security directly influence trialability
and perceived benefits. ANP modeling further shows
dependencies between security, compatibility, and technology
Bayesian Networks are constructed to model
probabilistic risks—e.g., how low encryption strength increases
the chance of breach or data leakage. Apache Spark-based
simulations test secure data transmission protocols and assess
performance trade-offs introduced by various security layers.
The integration of security measures is shown to add latency but
significantly increases trust, which positively affects adoption
likelihood. The model also incorporates future-ready
components like federated learning and blockchain to enable
decentralized, privacy-preserving data analysis. As a result,

resources.

strong security frameworks are not only protective but also
accelerators of Big Data adoption.

Trialability:

Trialability refers to the extent to which organizations can
experiment with Big Data technologies before committing to
full-scale deployment. This factor is essential for minimizing
adoption risks, validating assumptions, and building user
confidence. In our enhanced framework, trialability is assessed
using fuzzy linguistic scales, reflecting factors like access to
pilot environments, sandbox testing, team training, and
prototyping capabilities. Fuzzy DEMATEL identifies trialability

Result and Discussion:

as a dependent factor, influenced by compatibility, technology
resources, and security. ANP modeling emphasizes its role in
reinforcing perceived benefits by creating low-risk feedback
loops. We use Apache Spark to simulate controlled trial
environments, allowing parallel processing of experimental and
production workflows. Metrics like resource usage, execution
time, and error rates from trial runs help evaluate feasibility.
Bayesian Networks assess the likelihood of full adoption success
based on trial outcomes, adjusting for external constraints like
team resistance or regulatory limitations. While often ranked
lower in importance, trialability is shown to be a critical step in
Big Data maturity. Organizations that prioritize structured
experimentation are more agile, have fewer deployment failures,
and are better equipped to customize solutions to their
operational contexts.

DEMATEL Method:

The enhanced DEMATEL method serves as the analytical
backbone of our hybrid decision model for Big Data adaptation.
Traditional DEMATEL uses expert judgments to construct direct
relation matrices and visualize causal structures between criteria.
However, in real-world applications where uncertainty and
interdependencies dominate, we implement Fuzzy DEMATEL
to incorporate linguistic assessments converted into triangular
fuzzy numbers. This allows for a more accurate capture of
subjective opinions. The output is a total influence matrix that
identifies both cause and effect criteria. To account for mutual
interdependencies, we integrate Analytic Network Process
(ANP), allowing us to model feedback loops among factors. For
robust ranking and consistency checking, we apply COPRAS
alongside Influence Degree Index (IDI) and Consistency Ratio
(CR) metrics. Furthermore, we develop Bayesian Networks from
the fuzzy matrices to model conditional probabilities and
forecast outcomes under uncertainty. Apache Spark facilitates
real-time simulations of adaptation scenarios, validating model
predictions at scale. This enhanced DEMATEL approach not
only quantifies relationships but also offers predictive insights,
making it a scalable and intelligent decision-support tool for
complex, distributed Big Data environments.

To assess the interrelationships among the five key factors influencing Big Data adaptation, we applied the enhanced Fuzzy
DEMATEL method on expert evaluations. A direct-relation matrix was constructed based on aggregated expert input, quantifying the

influence each factor exerts on the others. The values range from 0 (no influence) to 5 (very high influence). Table 1 presents the

updated influence values among the five dimensions.
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Factor Compatibility|Perceived Benefits Technology Resources{Security & Privacy|Trialability|Sum
Compatibility 0 3.5 4.8 5.0 4.2 17.5
Perceived Benefits 2.9 0 3.7 2.6 3.1 12.3
Technology Resources|4.5 3.2 0 3.6 3.0 14.3
Security & Privacy [3.8 3.1 2.9 0 3.3 13.1
Trialability 2.5 2.2 3.3 3.9 0 11.9

Table 1. Direct-Relation Matrix for Big Data Adaptation.

BIG DATA ADAPTION ]

4
3 | : .
3 | ] =
-l i I I
Compatibility Perceived benefits  Technology resources Security and privacy « Trialability
B Compatibility ™ Perceived benefits = Technology resources ™ Security and privacy = Tnalabality

Figure 1. Big Data Adaption

Figure 1 implies that the statistical values of the Big Data Adaption.

Factor CompatibilityPerceived Benefits Technology Resources[Security & Privacy|Trialability
Compatibility 0.0000 0.2000 0.2743 0.2857 0.2400
Perceived Benefits  |0.1657 0.0000 0.2114 0.1486 0.1771
Technology Resources|0.2571 0.1829 0.0000 0.2057 0.1714
Security & Privacy [0.2171 0.1771 0.1657 0.0000 0.1886
Trialability 0.1429 0.1257 0.1886 0.2229 0.0000
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Table 2. Normalized Direct-Relation Matrix for Big Data Adaptation using Enhanced Fuzzy DEMATEL
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Compatibility
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Figure 2. Normalization of direct relation matrix of Big Data Adaption.

C PB TR SP T

C 1 0 0 0 0
PB 0 1 0 0 0
TR 0 0 1 0 0
SP 0 0 0 1 0
T 0 0 0 0 1

Table 3. Identity Matrix (I) for 55 DEMATEL System

C PB TR SP T
C 0.0000 0.2000 0.2743 0.2857 0.2400
PB 0.1657 0.0000 0.2114 0.1486 0.1771
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C PB TR SP T
TR 0.2571 0.1829 0.0000 0.2057 0.1714
Sp 0.2171 0.1771 0.1657 0.0000 0.1886
T 0.1429 0.1257 0.1886 0.2229 0.0000
Table 4.Normalized Direct-Relation Matrix (Y) using Enhanced Fuzzy DEMATEL Values
C PB TR Sp T
C 1.0000 —0.2000 —0.2743 —0.2857 —0.2400
PB —0.1657 1.0000 —0.2114 —0.1486 —0.1771
TR —0.2571 —0.1829 1.0000 —0.2057 —0.1714
Sp —0.2171 —0.1771 —0.1657 1.0000 —0.1886
T —0.1429 —0.1257 —0.1886 —0.2229 1.0000
Table 5.(1 — Y) Matrix using Enhanced Fuzzy DEMATEL Normalized Matrix
C PB TR SpP T
C 2.0956 1.0123 1.2187 1.3258 1.0342
PB 1.0653 1.7032 1.0635 1.0292 0.8421
TR 1.2734 0.9411 1.9541 1.1688 0.8914
SP 1.0877 0.8244 0.9260 1.8627 0.7492
T 0.8982 0.6547 0.8776 1.0069 1.5783
Table 6: Inverse of (I — Y) Using numerical matrix inversion (MINVERSE)
C PB TR Sp T
C 1.9360 1.5416 2.1598 2.3776 1.8264
PB 1.3602 1.6037 1.8219 1.6431 1.3485
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C PB TR SP T
TR 2.1979 1.5232 2.3283 2.1221 1.6712
SP 1.8264 1.3942 1.6745 2.0711 1.3609
T 1.2715 0.9901 1.5274 1.7628 1.5783

Table 7. Total Relation Matrix (T) for Enhanced Big Data Adaptation using Fuzzy DEMATEL, ANP, Bayesian Modeling

|"l'utal Relation matrix (T) |

6.0000
so0 —
4.0000 -
o i
3.0000 ..
2.0000
- B i H H I
0.0000
Compatibility Perceived benefits  Technology resources  Security and privacy Trialability
[ | | I |

Figure3. “Total Relation Matrix”

Figure 3 implies the values of the Total Relation Matrix of big data adaption,

Factor Ri (Row Total — Influence Given)|Ci (Column Total — Influence Received)
Compatibility 9.8414 7.5527
Perceived Benefits 7.7774 6.1132
Technology Resources|9.8427 7.5119
Security & Privacy (8.3271 7.4988
Trialability 7.1301 6.2402

Table 8. Sum of Rows (Ri) and Columns (Ci) from Enhanced Total Relation Matrix T
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Total Relation matrix (T) Ci, Ri

Trialability
Secunity and privacy
Technology resources
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Compatibility
00000 10000 20000 30000 40000  S0000° 60000 70000  B.O000
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Figure 4. Total Relation Matrix T Ri, Ci.

Figure 4 shows that the Compatibility is much higher than other both in Ri and C

Factor Ri + Ci Ri - Ci Rank Identity
Compatibility 17.3941 2.2887 1 Cause
Technology Resources 17.3546 2.3308 2 Cause
Security & Privacy 15.8259 0.8283 3 Cause
Perceived Benefits 13.8906 1.6642 4 Cause
Trialability 13.3703 0.8899 5 Cause

Table 9.Cause and Effect Calculation using (Ri + Ci) and (Ri — Ci) from Enhanced DEMATEL Analysis

Rank Factor Category
1 Compatibility Cause
2 Technology Resources Cause
3 Security & Privacy Cause
4 Perceived Benefits Cause
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Rank

Factor

Category

5 Trialability

Cause

Table 10: Final Ranking of Big Data Adaptation Factors

Compatibility

Perceived benefits

Techmology resources

Security and privacy

-

Figure 5. RANK of the Big Data Adaption

Figure 5 shows the “Rank of the parameters of Security, and privacy, Trialability.” Here the Compatibility is placed at the top and

the Trialability is placed at the bottom by using Dematel method.

Conclusion

This study presents a comprehensive and enhanced framework
for evaluating Big Data adaptation in distributed environments
using a hybrid decision-support model. By integrating Fuzzy
DEMATEL, Analytic Network Process (ANP), and COPRAS,
the proposed methodology effectively captures the complexity,
interdependency, and uncertainty that characterize real-world
Big Data implementation scenarios. Traditional models, while
useful, often fail to address dynamic relationships, subjective
expert assessments, and computational scalability. The enhanced
approach presented in this work overcomes these limitations
through multi-level analysis and integration with Bayesian
Networks and Apache Spark for real-time simulation and
validation.Our findings confirm that among the evaluated
factors—Compatibility, Perceived Benefits, Technology
Resources, Security & Privacy, and Trialability—Compatibility
emerges as the most influential driver of Big Data adaptation. It
plays a foundational role in enabling seamless integration,

reducing system conflicts, and promoting interoperability across
legacy and modern infrastructures. Technology Resources
follow closely, reflecting the growing importance of scalable
storage, high-performance computing, and expert talent in
supporting data-driven transformation. Interestingly, while
Trialability is traditionally seen as a safety net, our analysis
confirms it is a dependent factor, influenced by more dominant
variables like security, compatibility, and resources.The hybrid
model's strength lies in its ability to transform qualitative expert
judgments into quantifiable metrics, enabling more objective
evaluation and prioritization. The use of Fuzzy DEMATEL
allowed the model to accommodate linguistic and uncertain
inputs, while ANP and COPRAS provided robust prioritization
and ranking mechanisms. The incorporation of Bayesian
Inference further enhanced the framework’s capability by
revealing hidden probabilistic causal relationships between
adaptation factors. Through Apache Spark simulation, we
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validated these insights in a high-throughput environment,
adding empirical credibility to our theoretical model.

Moreover, the study introduces new research dimensions such
as Edge/Fog Computing with TinyML, Blockchain-based data
security, Explainable Al (XAI) techniques like SHAP and
LIME, and Federated Learning for decentralized model training.
These directions not only future-proof the model but also align it
with emerging trends in data governance and privacy.
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